T2K実験におけるミューオンニュートリノ 消失現象を用いたニュートリノ振動 パラメータの測定 ^{京都大学 高エネルギー物理学研究室} 村上 明

- ニュートリノ振動
- T2K実験
- データ取得・ビームの安定性
- ニュートリノ事象の予測・観測
- 振動解析
- 結論

フレーバー固有状態(物質との反応)と質量固有状態(時間発展)が異なる:

<u>ニュートリノ振動の理解・課題</u>

現状の理解 (~2012年, グローバルフィット by G. Fogli et al.)

	$\Delta m^2_{12}(eV^2)$	$\Delta m^{2}_{32}(eV^{2})$	θ ₁₂ (°)	θ ₂₃ (°)	θ ₁₃ (°)	δ
中心値	7.6×10 ⁻⁵	2.4×10 ⁻³	34.0	40.4	9. I ≠ 0	?
誤差	0.2×10 ⁻⁵	0. × 0 ⁻³	1.1	3.2	0.6	?

θ₁₃≠**0,**しかも意外と大きい

→ 未測定 CP asymmetry (δ) の測定

 $P(\nu_{\mu} \to \nu_{e}) = 4\cos^{2}\theta_{13}\sin^{2}\theta_{13}\sin^{2}\theta_{23} \cdot \sin\left(\frac{\Delta m_{31}^{2}L}{4E}\right) + (\text{CP asymmetry})...$

(CP asymmetry) $\propto \sin \theta_{12} \sin \theta_{13} \sin \theta_{23} \sin \delta$ ~0.56 ~0.16 ~0.65

今後、θ₂₃の精度が重要 → T2K実験にてθ₂₃の精密測定

<u>T2Kニュートリノ振動実験</u>

主な目的

v_e出現事象(v_µ → v_e)の観測、有限なθ₁₃の値を決定

νµ消失事象(vµ → vx)の観測を元に、(sin²2θ₂₃,Δm²₃₂)の精密測定

目標精度:δ(sin²2θ₂₃)~0.01, δ(Δm²₃₂)~10⁻⁴ eV²

 $P(\nu_{\mu} \to \nu_{\mu}) \sim 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E} \right)$

<u>SKでのv_µ事象観測</u>

- v_µの観測: Charge current (CC)反応で出てくるµを観測
 - 0~IGeVで主な反応 = CCQE; v_µ + n → µ + p
- •µの運動量・角度分布からvのエネルギーを再構成

SKでの予測v_µエネルギー分布 (目標統計:7.8×10²¹POT) POT:統計の指標

SKでの測定vµの事象数・ SKでの予測vuの事象数・ エネルギースペクトル

エネルギースペクトル

①実験を続け、観測数を増やす

- 大強度陽子ビームの運用

- vの方向の制御

X

|vフラックス | X |vと物質の反応断面積 | X |SKの検出効率|

②vフラックス, v反応断面積に大きな系統誤差(20~30%)

感度向上のために……

①:ビームモニターによる安定した実験の遂行 & vビームの方向を

精度よく制御。

②:T2K&外部実験の測定を元に予測精度(特にvフラックス)を向上。

→ 振動解析を行い、(sin²2θ₂₃,Δm²₃₂)を求める。

13年2月20日水曜日

リアルタイム監視 → 即座にビーム制御にフィードバック

アレイ状の各chの電荷からµの プロファイルの中心を求める

Fig. 4. Photograph of the silicon PIN photodiodes (right) and the ion bers (left) in the support enclosure. The beam enters from the right s

13年2月20日水曜日

● v事象を観測し、vビームの強度・方向を直接測定

● vの反応断面積は小さいので、約Ⅰヶ月のデータが必要

- 今回使用したデータの統計量(RunI-3): 3.0 |×| 0²⁰ POT
 - Runl-2の約2倍, T2Kの目標統計の4%

¹³年2月20日水曜日

<u>SKでのv事象数・エネルギースペクトルの予測</u>

• モンテカルロシミュレーション(MC)を用いて予測

- ハドロン生成反応モデルの不定性
- ➡ 外部の実験データ(CERN NA61/ SHINE: 30GeV p+C 等)を元に、 ハドロンの生成運動量・角度分布、 反応断面積を調整

- モデル以外のパラメータの不定性
 - vビームの方向、標的上での陽子ビームの位置・角度
 → Off-axis角度に影響
 - ホーン電流値 → vフラックスの量に影響
- ➡ T2Kの各種ビームモニターで測定。
 - ➡ 安定したビーム運転により不定性を抑える。

<u>SK vフラックス予測</u>

<u>ND280によるv予測の改</u>

● ND280でv_µのCC反応を観測、

µの運動量・角度分布を測定

● ND280での**vフラックスとv反応断面積** を**同時に**測定

➡ SKのv事象予測に反映

µの運動量分布(CCQE-like)

CCQE: $v+n \rightarrow \mu + p$

予測SKνμ事象数 (統計誤差)

振動あり

57.8 (13%) $(\sin^2 2\theta_{23}, \Delta m^2_{32}) = (1.0, 2.4 \times 10^{-3} \text{eV}^2)$

振動なし 196.2 (7%)

種々の測定データにより、系統誤差を軽減

<u>振動解析の方法</u>

Maximum likelihood method → $(sin^2 2\theta_{23}, \Delta m^2_{32})=o$ を決定。

事象数エネルギースペクトル系統誤差
$$\mathcal{L}(N_{obs}, E_{obs}^{rec}; o, f) = \mathcal{L}_{norm}(N_{obs}; o, f) \times \mathcal{L}_{shape}(E_{obs}^{rec}; o, f) \times \mathcal{L}_{syst}(f)$$
系統誤差の寄与を表すパラメータ:測定したvµ事象数と系統誤差の寄与を表すパラメータ:SK vフラックス、v反応断面積、
SK検出効率を変化させる。

解析の流れ

- o, f を動かして、X² = -2 Log Lを最小にするベストなo, f を決定。
- 各o点とベストフィットでのχ²の差 (=Δχ²)を元にoの許容範囲を決定。

データの解析結果

ベストフィット

 $(\sin^2 2\theta_{23}, \Delta m^2_{32}) = (1.00, 2.45 \times 10^{-3} \text{ eV}^2)$

再構成したニュートリノエネルギー分布

90% C.L. コントアーの比較

T2Kの目標統計のわずか4%の統計

(3.01×10²⁰POT)で、世界最高峰の精度を達成

まとめ

- T2K実験においてv_µ消失現象を観測することで、振動パラメータ (sin²2θ₂₃, Δm²₃₂)を測定する。
- ビームモニターを用いて、要求のImrad以上の精度でビーム方向を コントロール、安定した実験遂行に貢献。
- 測定データを用いて、ニュートリノフラックスの予測精度を改善 させ、振動パラメータの精度を向上させた。
- 2010年1月~2012年6月までのデータで、(sin²2θ₂₃, Δm²₃₂) = (1.00^{+0.00}-0.04, 2.45±0.19×10⁻³ eV²)を得る
 - T2K目標統計のわずか4%で世界最高峰の測定精度を達成

