カムランド禅実験における ¹³⁶Xeの二重ベータ崩壊探索 のためのバックグラウンド評価

Feb.21st.2012 Hakuba Symposium

東北大学RCNS M1 松田さゆり

double beta

▶どちらが正しい?
¹³⁶Xe 2vββの半減期 T^{2v}_{1/2}
DAMA: 1.0×10²²yr (2002)
5倍!
EXO: 2.11×10²¹yr (2011)

(3)ニュートリノ有効質量の測定

質量階層構造への制限

Phys. Lett. B 546, 23(2002) : DAMA Phys. Rev. Lett. 107. 212501(2011) : EXO-200 Phys. At. Nucl. 69,2129(2006)

KamLAND-Zen実験

2011年10月実験開始

KamLAND with Zero Neutrino double beta decay search

ミニバルーン(ナイロン製)
半径1.54m, 厚さ25µm
Xe-LS
82%: デカン
18%: プソイドクメン
2.7g/l: PPO
(2.52±0.07)wt% 濃縮Xe
(90.93% ¹³⁶ Xe, 8,89% ¹³⁴ Xe)

キャリブレーション

(2)²⁰⁸TI

バックグラウンドの概観

全体のエネルギースペクトル

バックグラウンドの起源 (1)バルーンに混入または付着 制作

輸送

インストール

(2)Xe-LS送液システムに混入

(3)原子核破砕 (spallation) ex) 宇宙線ミューオンによる12C破砕

²³²Th:²⁰⁸TI (Singleイベント) -> ²¹²Biのレートに変換

Xe-LS中に含まれるU, Thの量

²¹⁴Bi in Xe-LS 4.88 ± 0.83 events/day

²³⁸U in Xe-LS:(3.5±0.6) x 10⁻¹⁶ g/g ²³⁸U in balloon:(1.8±0.4) x 10⁻¹¹ g/g

 212 Bi in Xe-LS 10.1 ± 1.3 events/day

²³²Th in Xe-LS:(2.2±0.3)x10⁻¹⁵ g/g ²³²Th in balloon:(3.7±0.4)x10⁻¹¹ g/g

U,Th以外のバックグラウンドは?

2vββエネルギー領域のバックグラウンド

0vββエネルギー領域のバックグラウンド

Ovββエネルギー領域の放射性同位体探索

▶ 手順

1. 原子核の崩壊系列の情報をリストアップ

2. それを元に

β崩壊(β⁻) (Z, A) → (Z + 1, A) + e⁻ + $\bar{\nu}_e$ 逆β崩壊(β⁺) (Z, A) → (Z - 1, A) + e⁺ + ν_e 電子捕獲(EC) (Z, A) + e⁻ → (Z - 1, A) + ν_e

2.6MeVに ピークがあるか?

- を起こす原子核の情報(寿命、Q値等)を集める
- 3. KamLANDで期待されるエネルギースペクトルを作る
 - エネルギー分解能: 6.9%/√E[MeV]
 - KamLANDのquenching factor
 - ~200nsのtime windowに入っているか
- 4. ENSDFの全原子核の崩壊をチェック
- 5.残ったスペクトルに対してさらに寿命の制限を加える (有力な原子核の崩壊系列を遡って、 寿命30日以上の親核があれば候補に入れる)

http://ie.lbl.gov/databases/ ennsdfserve.html

Ovββエネルギー領域の放射性同位体探索

▶ 残った候補

	崩壊モード	寿命	Q値[MeV]	
^{110m} Ag	β- + γ	360日	3.01	
⁸⁸ Y	EC + γ	154日	3.62	
²⁰⁸ Bi	EC + γ	5.31x10 ⁵ 年	2.88	
⁶⁰ Co	β-+γ	7.61年	2.82	

▶考察

- Xeガスが輸送中に大量の宇宙線を浴びて ¹³⁶Xeが破砕された?
 - → XeガスをLSに溶かす際には
 - 混入していた可能性あり

- LS中に一様に分布しているように見える

- → インストール時XeガスはLSに溶かして循環
- → Xeガスと共に混入して分散?

福島起源の可能性もあり

← 有力!

Xe spallationによって生成し、 Xeガスと共にLSに混入した?

^{110m}Ag,⁸⁸Y,²⁰⁸Bi,⁶⁰Co **0.22±0.04** (ton•day)⁻¹

二重ベータ崩壊の半減期と ニュートリノ有効質量の上限値

有効体積の決定

Systematic Uncertainty

全体のエネルギースペクトル

まとめ

- 9月にカムランド禅実験開始,1月に最初の結果を発表
- 高精度な二重ベータ崩壊の半減期を測定

(¹³⁶Xeを使った実験で世界一)

今後の展望

- バックグラウンドの更なる詳細解析、起源特定
- 2月にはフィルトレーションを実施
- Xe-LSの蒸留、精留等による <u>バックグラウンド除去の強化</u>

Back Up

Figure A.2: 232 Th decay series