ポジトロニウムの 超微細構造の精密測定

東京大学

石田 明

平成23年2月21日 第17回東京大学素粒子物理国際研究センターシンポジウム 於白馬

Ps HFS 精密測定

- 東大物理&素粒子センター
 小林富雄、浅井祥仁、難波俊雄、末原大幹、
 秋元銀河、石田明、佐々木雄一
- 東大総合文化

- 斎藤晴雄

- KEK 低温センター & 加速器
 - 山本明、田中賢一、吉田光宏

- ・イントロダクション
- ・我々の新しい実験セットアップ
- ・ 測定の途中結果
- ・今後の展望

- - レプトン 2 個だけから成る、最も軽い「原子」
 粒子・反粒子 → 新しい物理に敏感
- 東縛系 QED によって記述
- 基底状態 (1S) は、スピンの状態に応じて2種 類の状態
 - 1³S₁ (triplet、spin=1): オルソポジトロニウム (o-Ps)
 τ=142ns、3γ、(5γ、7γ...) に崩壊
 - 1¹S₀ (singlet、spin=0): パラポジトロニウム (p-Ps)
 - τ=125ps、2γ、(4γ、6γ…)に崩壊

2つのスピン固有状態

エネルギー準位

ずれの原因は?

- 標準理論を超えた新しい物理
 - 相互作用の弱い未知の粒子の介在
 - 重い粒子には感度が低いが、µの g-2と違い、s-channelの効果も見える。 (例 O(MeV), α~10⁻⁸の擬スカラー)
 - o-Psは余剰次元にも感度
- 過去の実験に共通した系統誤差
 - 物質の効果を過小評価していた可能性。熱化していない
 o-Psは特に低圧で大きな効果をもち、HFSをずらしている
 可能性がある。cf. o-Psの寿命問題 (1990年代)
 - 磁場の非一様性。数cmの大きな領域で ppm の磁場制御 をするのは難しい。過去の実験で最も大きな系統誤差。
- ・理論計算の間違い

ゼーマン効果を用いた間接測定の方法

ゼーマン効果を用いた間接測定の方法

周波数が ∆mix のマイ クロ波を供給すると、 o-Ps の m_z=0と m_z=±1 成分の間で遷移が起 こる。

→ 2γ 崩壊(**511 keV 単** 色) 率が大きくなる。 この崩壊率の変化が、 実験のシグナルになる。

→過去の全ての実験 と同じ方法

我々の新しい実験セットアップ

測定の原理は過去と同じ(Zeeman効果を使った間接測定)だが、

過去の問題点(磁場の非一様性、物質の効果)を解決するため新しい方法を用いる。

3つの新しいアイデアと技術を導入 1. 磁石 2. 時間 3. ガンマ線

我々の新しい実験セットアップ

 ・大型超伝導磁石だけでは、まだ 10 ppm 程度の非一様性が残る。
 ・ PMT (強磁性体) や治具の影響も大きい。それらを含めて磁場の 一様性を O(ppm) で出せるよう、補償磁石を設計・製作した。

我々の新しい実験セットアップ

我々の新しい実験セットアップ

平成22年7月から測定中 @KEK低温棟

磁石中心部

共鳴曲線 (0.895 amagat)

RFを固定して、磁場でスキャン。

本測定の暫定結果

系統誤差 (暫定)

	系統誤差の要因	大きさ (ppm)
磁場	非一様性	1.8
	補正	1
	NMR測定值	1
検出効率	MCを用いた評価	6
物質の」	RF印加時のガスの性質	13
効果 し	ポジトロニウムの熱化	3
RF _	RFパワー	3.1
	RF キャビティーのQ値	1.6
	RF周波数	1
	Quadrature sum	15

今後の展望

- 磁場:0.9 ppm (RMS)の一様性でOK
- 物質の効果:様々なガス密度でHFSを測定

 →シュタルク効果の見積もり
 ポジトロニウムの熱化関数を精密に測定
 ガスの理解 → ガスとRFIこ関する理解(分解、放電など)
- RF:温度管理してO(ppm)を達成。
- 統計誤差:今のところ11 ppm
 1~2年程度で O(ppm) まで向上できる。
- 検出効率:実データを基にして評価する。
 →ポジトロニウム生成位置の分布など(これから)

まとめ

- 重要な物理量である、ポジトロニウム超微細構造が、
 実験と理論で一様に 3.9 σ ずれている。
- 時間情報を取得する、新しい精密測定を行う。
- ・我々の新しい精密測定は、過去の実験で考えられる共通の系統誤差(磁場の非一様性、Psの熱化)を小さくする。
- ・昨年7月より、本測定を開始。
- ・本測定の暫定結果として、19 ppmの値が得られた。
- ガスに関する不定性など、いくつか残る系統誤差を 抑え、1~2年程度で、物質の効果を入れて O(ppm) の精度を達成し、ずれの検証を行う。