J-PARC KI.IBR Beam Lineを用いた250L 液体アルゴンTPC検出器の性能評価Part II ^{早稲田大学 寄田浩平研究室} 修士1年 岡本 迅人

2011/02/21(月)ICEPPシンポジウム@白馬村岳美荘

Outline

Introduction

- ✤ 液体アルゴンTPCとは
- ◆ 狙う物理
- ◆ 核子崩壊
- J-PARC Beam Test
 - ◆ 実験目的
 - J-PARC KI.IBR
 - ◆ 250L検出器

✤ 解析

- ◆ 読み出しと再構成
- ✤ 宇宙線µによる純度測定
- ◆ 液体アルゴングループの目標
- Beam Test Motivation
- ✤ 解析Algorithm
- ✤ 解析Algorithmのチェック
- ◆ dE/dx算出
- Summary & Future Plan

Outline

Introduction

- ✤ 液体アルゴンTPCとは
- ◆ 狙う物理
- ◆ 核子崩壊
- J-PARC Beam Test
 - ◆ 実験目的
 - J-PARC KI.IBR
 - ◆ 250L検出器

✤ 解析

- ◆ 読み出しと再構成
- ✤ 宇宙線µによる純度測定
- ◆ 液体アルゴングループの目標
- Beam Test Motivation
- ✤ 解析Algorithm
- ✤ 解析Algorithmのチェック
- ◆ dE/dx算出
- Summary & Future Plan

Geant4によるSimulation

液体アルゴングループの目標

✤ v_µ->v_e(v_µ->v_e)振動におけるCP対称性の破れの探索

- ◆ CP対称性の破れの検出のためには大質量・高性能の遠方検出器が必要
- 主な背景事象となるv_µからのπ⁰を効率的に除去できる検出器が有利
- ✤ 核子崩壊
 - ✤ P->vK+:SUSY理論では分岐比が多いと予想
 - ✤ 荷電K中間子の識別能力が高い検出器が有利
- 🔹 暗黒物質探索
 - ✤ 暗黒物質の反跳エネルギーに対して閾値が低い検出器が有利
 - ✤ S2/SIで背景事象を除去できる

液体アルゴンTPC検出器はこれらの目標に特化した検出器

J-PARC to Okinoshima

- I00ktの液体アルゴン検出器を隠岐の島に設置し、大強度化された
 ニュートリノビームを用いることで、ニュートリノの物質・反物質非
 対称性パラメータδの発見を目指す。
- 同時に核子崩壊実験を行い、大統一理論の解明を行う。

Beam Test Motivation

陽子崩壊探索のためのK/π識別能力の測定

✤ 陽子崩壊時のK⁺の運動量は340MeV/c~20cm飛程し崩壊する。

▶ 粒子の崩壊点を定義し、そこから20cm遡ってdE/dxを算出する

イベント例(実データ)

電子のドリフト方向

Kaon Event display

Kaonの崩壊モード ・ μ⁺ν_μ (約63.4%) ・ π⁺π⁰ (約21.1%) ・ π⁺π⁺π⁻ (約5.6%) ・ π⁰e+ve (約4.9%) ・ π⁺π⁰π⁰ (約1.7%)

イベント例(実データ)

電子のドリフト方向

イベント例(実データ)

電子のドリフト方向

イベント例(実デ-

電子のドリフト方向

イベント例(実データ)

電子のドリフト方向

Geant4を用いた、解析手法のMC study

イベント例(Geant4 Simulation)

電子のドリフト方向

Track Finding Algorithm

- ◆ 各チャンネルThreshold cutを行う
- ◆ Thresholdを超えたものがあったら次のチャン ネルも探す
- ◆ 3チャンネル続けて信号がない場合、解析終了

Track Finding Algorithm

- ◆ 各チャンネルThreshold cutを行う
- ◆ Thresholdを超えたものがあったら次のチャン ネルも探す
- ◆ 3チャンネル続けて信号がない場合、解析終了

Algorithmのチェック

崩壊点の決定の正しさ

K/π識別には崩壊点の決定が重要

Geant4 SimulationによるdE/dx結果

K/πがある程度分離できている

Summary & Future Plan

<u>Summary</u>

✤ このstudyに使った解析手法を用いることで、MCではある程度dE/dxで分離できることがわかった。

Future Plan

- ✤ 崩壊点決定方法の改良し、実データに適用する。
- ✤ K/π識別能力を検証し、Reduction factor、signal efficiencyを求める。
- ◆ Ⅰ次元読み出しから2相型2次元読み出しにした時の識別能力を推定する。

250L容器搬出 from KEK

250L容器搬出 from KEK

• Start pointからfitする

- start pont+1
 - •
 - •
- start point \sim stop point
- fitのχ²が50以上になったチャンネルをχ²悪化点①とする。
- end pointから同様にfitしχ²悪化点②を決定する。
- Start- χ^2 悪化点①の直線と χ^2 悪化点②-stopの直線を仮のdecay pointとする。

崩壊点の決定の正しさ

K/π識別には崩壊点の決定が重要

Track Finding Algorithmにより求めた崩壊点の正しさの検証

Event display(Kaon)

Event display(Pion)

崩壊点がmatchしなかったもの

崩壊点がmatchしなかったもの

核子崩壊まとめ

BG:Event/100kt · yr

	Water Cherenkov		Liquid Argon TPC	
	Efficiency	Background	Efficiency	Background
$p \rightarrow e^{+}\pi^{0}$	45%	0.2	45%	0.1
$p \rightarrow \mu^{+} \pi^{0}$	36%	0.2	45%	0.8
$p \rightarrow K^+ v$	14%	1.3	97%	0.1
$p \rightarrow K^0 \mu^+$	8%	0.8	47%	0.2

* πモードに対しては水チェレンコフと液体アル

ゴンは同等の感度を持つ。

✤ Kモードに対しては液体アルゴンは水チェレン コフより圧倒的に優れた感度を持つ

なぜ隠岐の島?

- T2Kは振動の第1ピークをみることにオプティマイズされている(第2ピークのv数が少ない)
- 隠岐の島は、距離が長い分
 とオフ角度が浅いことで、
 第2ピークもv数が大きい。

Active area: 99.1%

non-instrumented areas

- angle: +/- 45deg
- readout pitch: 3mm
- intrinsic pitch: 0.6mm
- strip width: 120&500um
- channels: 2x256 (16 cables)

