米国フェルミ研ブースターニュートリノビームを 用いた短基線ニュートリノ振動の探索

ICEPPシンポジウム 平成23年2月21日

ニュートリノ振動
 実験のセットアップとデータセット
 短基線 ν μ 消失の探索
 まとめ

Introduction

これまでのニュートリノ振動実験の結果

Atmospheric region: $\Delta m^2 \sim 10^{-3} \text{ eV}^2$

Super-K, K2K, MINOS, etc

Solar region: $\Delta m^2 \sim 10^{-5} \text{ eV}^2$

SNO, Super-K, KamLAND, etc

<u>3世代ニュートリノの 標準理論では、許</u> <u>される∆m²の値は2つまで</u>

これまでのニュートリノ振動実験の結果

Atmospheric region: $\Delta m^2 \sim 10^{-3} \text{ eV}^2$

Super-K, K2K, MINOS, etc

Solar region: $\Delta m^2 \sim 10^{-5} \text{ eV}^2$

SNO, Super-K, KamLAND, etc

<u>3世代ニュートリノの標準理論では、許</u> <u>されるΔm²の値は2つまで</u>

、しかし、Δm² ~ 1 eV²のニュートリノ 振動(?)がLSND実験により示唆

Active-sterile neutrino oscillation?

 LSND 実験は νμビーム中から νeの出現を 観測(3.8σ)
 Best fit: Δm² ~ 1 eV², sin²2θ ~ 0.003

■ どう解釈できるか

Scillation with active($\nu_{\rm L}$) and "sterile" ($\nu_{\rm R}$) neutrinos? 3+1 sterile neutrino scheme

ν_{μ} disappearances

νμ 消失のチャンネルから、ステライルニュートリノを探す

- まだまだ許されるパラメター領域が残っていいる
- 最近がMiniBooNE単独のデータを用いたνμ 消失の探索を行った
- しかし、 <u>ニュートリノフラックスと反応断面積の系統誤差が大きい</u>
 →前置検出器(SciBooNE)を用いれば改善出来るはず

(本解析のモチベーション)

Allowed regions from (3+1) global fits

G. Karagiorgi, et al. Phys. Rev. D **80**, 073001 (2009)

Experimental setup

Overview

Overview

SciBooNE detector installed in April 2007

※1 GeV付近のニュートリノ反応
 断面積の精密測定
 ※ MiniBooNE の前置検出器

in, winnenner

Fermilab Booster
Neutrino BeamBeターゲット・電磁ホーンSom 崩壊領域土

 π^+

9

 平均エネルギー0.8 GeV のほぼ純粋な *ν*^μビーム(93%*ν*^μ)
 ホーンの極性を変えることで、反 ニュートリノビームも生成可能

νμ

 $\circ \mu^+$

SciBooNE detector

MiniBooNE detector

- ターゲットの540m下流に設置。
 - Mineral oil Cherenkov detector
 - **n** = 1.47
 - Total mass: ~800 ton
 - Main component: CH₂
- Designed to test the LSND signal at L/E ~ 0.7 meter/MeV

L/E for MiniBooNE: 540m / 0.8 GeV ~ 0.7 m/MeV

■ 2002から(現在も)データを取得

2つの検出器はビームと ニュートリノ標的(炭素)が共通

Data sets

-	Period	BNB Mode	SciBooNE POT	MiniBooNE POT
C	Sep. 2002 - Dec. 2005	Neutrino		5.58×10^{20}
	Jan. 2006 - Aug. 2007	Antineutrino	0.52×10^{20} (from Jun. 2007)	1.71×10^{20}
C	Oct. 2007 - Apr. 2008	Neutrino	0.99×10^{20}	0.83×10^{20}
	Apr. 2008 - present	Antineutrino	1.01×10^{20} (until Aug. 2008)	ongoing

全てのニュートリノモードのデータを用いた解析を話します

- SciBooNE: 0.99 x 1020 POT
- MiniBooNE: (5.58 + 0.83) x 10²⁰ POT

Integrated shift statistics - SB only

$\begin{array}{l} \textbf{Analysis strategy} \\ \textbf{Target/Horn} & \textbf{CiBoNE} & \textbf{Target/Horn} \\ \textbf{Target/Horn} & \textbf{CiBoNE} & \textbf{Target/Horn} \\ \textbf{Target/Horn} & \textbf{CiBoNE} & \textbf{Target/Horn} \\ \textbf{Target/Horn} & \textbf{Target/Horn} \\ \textbf{Target$

SciBooNE event selection

荷電カレント反応を
 インクルーシブに用いる
 N ×
 Select MIP-like energetic tracks (Pµ>0.25GeV)
 A

Reject side-escaping muons.

3 samples:

SciBar-stopped (P_{μ}, θ_{μ})

MRD-penetrated (θ_{μ})

MRD-stopped (P_{μ}, θ_{μ})

P_{μ}: Muon momentum reconstructed by its path-length θ_{μ} : Muon angle w.r.t. beam axis

W

CC interaction rate

 3つのサンプルから得られた ミューオンの分布をフィット
 エネルギーごとの ニュートリノ反応数を評価
 これは「フラックス」と 「断面積」の積
 Direct input for the joint ν_µ disappearance analysis

ついでにニュートリノ反応断面積を評価して、発表しました。 (世界初の炭素標的に対するCC全反応断面積の測定) Phys. Rev. D **83**, 012005 (2011)

MiniBooNE reconstructions

 チェレンコフ光の光量・タイミング からミューオンの運動量・方向を 再構成

■ CC 準弾性散乱(νn→μp) を課程 してニュートリノエネルギーを再構 成

$$E_{\nu}^{rec} = \frac{m_p^2 - (m_n - E_B)^2 - m_{\mu}^2 + 2(m_n - E_B)E_{\mu}}{2(m_n - E_B - E_{\mu} + p_{\mu}\cos\theta_{\mu})}$$

MiniBooNE prediction

MiniBooNE単独での予測とその誤差

MiniBooNE prediction

SciBooNEの測定結果を適用し、2検出器間の

誤差の相関などを頑張って見積もった結果

MiniBooNE単独での予測とその誤差

フラックスと断面積の系統誤差を、MiniBooNE 検出器のエラーと同程度まで抑えることに成功

MiniBooNE prediction

SciBooNEの測定結果を適用し、2検出器間の

MiniBooNE単独での予測とその誤差

フラックスと断面積の系統誤差を、MiniBooNE 検出器のエラーと同程度まで抑えることに成功

Oscillation probability

- 全体として、
 - 最初の振動のピークで振動 確率が最大になる
 - Δm²が大きくなると、エ ネルギーで積分することに より振動の効果が弱まる
- SBとMBの振動確率の比
 P(MB)/P(SB) が期待されるシ
 グナル
- 0.5 < Δm² < 30 eV²に感度

Oscillation fit

st 35000 $sin^{2}2\theta = 0.5$ ■ 2世代間の振動を仮定して、 30000 $(\Delta m^2, sin^2 2\theta)$ 平面上をスキャン 25000 20000 $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \frac{1.27\Delta m^2 [\text{eV}^2]L[\text{km}]}{E[\text{GeV}]}$ 15000 10000 **5000** 以下で定義される Δ χ² を評価 Ratio to null 1.4⊨ 1.3 $\Delta \chi^2 = \chi^2$ (each point) - χ^2 (best) 1.2 1.1 $\chi^{2} = \sum (M_{j}^{obs} - M_{j}^{pred}) V_{jk}^{-1} (M_{k}^{obs} - M_{k}^{pred})$ 0.9 **0.8 0.7** 0.6 0.5[∟]0 0.2 0.8 1.2 0.4 0.6 1

MiniBooNE E_{ν} (rec) prediction

- Null

1.4

1.6

Reconstructed E, (GeV)

1.8

 $-\Delta m^2 = 1.7 eV^2$

 Δ m² = 3.4 eV²

 $-\Delta m^2 = 6.8 eV^2$

 $\Delta m^2 = 13.5 eV^2$

Sensitivity

Sensitivity is defined as the expected limit

 (One of) the world best sensitivity at 0.5
 < Δm₂ < 30 eV².

まとめ

 SciBooNEとMiniBooNE双方のデータを用いたvµ消失の探索を行った
 1eV付近の軽いステライルニュートリノの探索
 SciBooNEのデータを用いることで、MiniBooNEでの系統誤差を、検出器 応答の誤差と同程度まで、大幅に削減

■ 0.5<Δm²<30 eV²で世界最高感度を達成

■ (今後は反ニュートリノの解析も・・・)