

Double Chooz実験における 宇宙線ミューオン飛跡再構成方法の開発

21 Feb. 2011

17th ICEPP Symposium Sumire Shimojima (Tokyo Metro. Univ.)

Double Chooz実験のニュートリノ検出方法

Double Chooz実験のFar Detectorでは約69個/dayのニュートリノが 観測されると期待されている。

Background

- Accidental background : γ線 + neutron
 - γ線 (~5Hz)
 - 検出器や岩盤に含まれるγ線
 - neutron (~88n/h)

- Correlated background
 - fast-neutron
 - 宇宙線起源の中性子
 - spallation
 - 宇宙線の核破砕で生じた核種の崩壊

⁹Li background

- correlated BG(spallation BG)
- ¹²Cの核破砕で生じた同位体が vのバックグラウンドになる。
- ⁹Li
 - τ_{9Li}~178.3ms (寿命が長い)
 - $\,N_{9Li}\!\!\sim$ 2.0% of $\nu_{observed}$

⁹Li BGの見積もりの研究

この場合、v事象がBGとなる。

µと⁹Liは相関関係がある。 →µのtrackingへの要求

⁹Li BGの見積もりの研究

この場合、v事象がBGとなる。

µと⁹Liは相関関係がある。 →µのtrackingへの要求

⁹Li事象のselection

vlike signalからの時間差 △T<400 msec muonの飛跡とprompt signal点との距離 △L<40 cm

<u>⁹Li事象の見つけ方</u>

△T<400 msecに複数のmuonが通った際は△Lが最も小さいmuonで⁹Li-muonペアを 組んだ。

ミューオン飛跡再構成方法

Sumire SHIMOJIMA - 17th ICEPP Symposium

How to reconstruct muon track (1)

使用したmuonサンプルはDouble Chooz FarDetector周辺の地形を考慮

再構成はInner VetoのPMTを用いて行う

- Top (24)
 - 1st ring inward (6)
 - 1st ring outward (6)
 - 2^{nd} ring inward (6)
 - 2nd ring downward (6)
- Side (12)
 - upward (6)
 - downward (6)
- Bottom (42)
 - 1st ring inward (6)
 - 1st ring outward (12)
 - 2^{nd} ring inward (12)
 - 2^{nd} ring upward (12)

total 78 PMTs

Maximum Likelihood法で飛跡再構成を行った。

• PMTのhit time 例: top 1st ring outwardを使う場合 top 1st ring outward 各PMTの光量 光量比 top 1st ring outward PMT全ての光量和 • R_{entry} , R_{exit} (x,y,z)

How to reconstruct muon track (2)

Preselection

- IDとIV合わせた光量合計100p.e.以上


```
を使って
```

を出す

•
$$\phi_{entry}$$
 , ϕ_{exit}
• Z_{entry} , Z_{exit}

R

Maximum Likelihood法

飛跡再構成の性能評価方法

Rの性能評価

- 側面に入射した場合でも上面入射と再構成してしまう場合がある。
- ε_{rec}は平均0.8程度で再構成できている。
- 入口はZ_{rec}が側面だった場合、R_{rec}も側面になるようにしてある。
- 出口は一般的に再構成精度が良くない。
 - 側面から入射し下面に抜けたmuonなど、出口に入口の影響が大きく効いて しまうイベントが多い為である。

性能評価

ミューオン飛跡再構成の分解能は

入口/出口ともに分解能30cmを達成

selection efficiency

remeterey

Purity

Perfect resolution

Inner Veto resolution entry/exit 30cm/30cm

Inner Veto resolution entry/exit 60cm/60cm

Preliminary

Preliminary

Summary

- ⁹Li 事象はv事象に対し2.0%程度観測されると見込まれている。
- Inner Vetoでmuon を再構成する方法を開発している。

目標分解能入口/出口30/30cmを達成

- 飛跡再構成能力の改良
- ・ 開発した再構成方法を使って⁹Liの数を見積もる。
- Outer Veto(検出器上部に設置されるシンチレータストリップ検出器)
 とInner Vetoで再構成されたものと比較する。

2011/02/21