\mathcal{V}

ニュートリノのフレーバー(弱い相互作用)の固有状態が 時間(飛行距離)とともに変わる現象

ニュートリノのフレーバー(弱い相互作用)の固有状態が 時間(飛行距離)とともに変わる現象

ニュートリノのフレーバー(弱い相互作用)の固有状態が 時間(飛行距離)とともに変わる現象

フレーバーと質量の固有状態の混合により起こるlpha=e,µ,T $\left|
u_{lpha}
ight
angle = \sum_{i} U_{lpha i} \left|
u_{i}
ight
angle _{ ext{[f]}}$ $\left(egin{array}{c} \mathsf{i=l,2,3} \\ (\ext{[f]]} \end{array} \end{bmatrix} \\ \underline{I_{i}} & (\ext{[f]} \end{array} \end{bmatrix} \\ \underline{I_{i}} & (\ext{[f]} \end{array} \end{bmatrix} \\ \underline{I_{i}} & (\ext{[f]} \end{array} \end{bmatrix}$

これまでの測定結果 _{sij} = sinθ_{ij}, c_{ij} = cosθ_{ij}

$$U=\left(egin{array}{cccc} 1&0&0\ 0&c_{23}&s_{23}\ 0&-s_{23}&c_{23}\end{array}
ight)\left(egin{array}{cccc} c_{13}&0&s_{13}e^{-i\delta}\ 0&1&0\ -s_{13}e^{i\delta}&0&c_{13}\end{array}
ight)\left(egin{array}{cccc} c_{12}&s_{12}&0\ -s_{12}&c_{12}&0\ 0&0&1\end{array}
ight)$$

これまでの測定結果 _{sij} = sinθ_{ij}, c_{ij} = cosθ_{ij}

$$U = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right) \left(\begin{array}{cccc} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{array} \right) \left(\begin{array}{cccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right)$$

これまでの測定結果 _{sij} = sinθ_{ij}, c_{ij} = cosθ_{ij}

$$U = \left(\begin{array}{cccc} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{array} \right) \left(\begin{array}{cccc} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{array} \right) \left(\begin{array}{cccc} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{array} \right)$$

大気ニュートリノ 加速器ニュートリノ $\theta_{23} = 45 \pm 18^{\circ}$ しかし、 $v_{\mu} \rightarrow v_{\tau}$ は観測 されていなかった

OPERAで初観測!

これまでの測定結果

 $s_{ij} = sin\theta_{ij}, c_{ij} = cos\theta_{ij}$

Ve→VX

	∇_{F}	$\downarrow \rightarrow \downarrow$	УX	
U =	$\begin{pmatrix} 1\\ 0 \end{pmatrix}$	0 Сэз	0 823	
	0	$-s_{23}$	C ₂₃	

c_{13}	0	$s_{13}e^{-i\delta}$
0	1	0
$-s_{13}e^{i\delta}$	0	c_{13}

(c_{12}	s_{12}	$\left \begin{array}{c}0\\0\end{array}\right\rangle$
	$-s_{12} \\ 0$	c_{12}	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$
\			_ /

太陽ニュートリノ 原子炉ニュートリノ (KamLAND) $\theta_{12} = 32\pm1^{\circ}$

θ₂₃ = 45±18° しかし、νμ→ν+は観測 されていなかった ● OPERAで初観測!

大気ニュートリノ

加速器ニュートリノ

これまでの測定結果 _{Sii} = sinθii</sub>

 $s_{ij} = sin\theta_{ij}, c_{ij} = cos\theta_{ij}$

- 有限の θ 13の値を測定することが第一ステップ
- これが見つかると夢が広がる
 - ニュートリノ、反ニュートリノ間の比較
 - 異なる飛行距離での測定

- 有限のθ13の値を測定することが第ーステップ
- これが見つかると夢が広がる
 - ニュートリノ、反ニュートリノ間の比較
 - 異なる飛行距離での測定

- 有限の θ 13の値を測定することが第一ステップ
- これが見つかると夢が広がる
 - ニュートリノ、反ニュートリノ間の比較
 - 異なる飛行距離での測定

レプトンセクターでのCPの破れの測定

- 有限の θ 13の値を測定することが第一ステップ
- これが見つかると夢が広がる
 - ニュートリノ、反ニュートリノ間の比較
 - 異なる飛行距離での測定

レプトンセクターでのCPの破れの測定 ニュートリノ質量構造の解明

- 有限の θ 13の値を測定することが第一ステップ
- これが見つかると夢が広がる
 - ニュートリノ、反ニュートリノ間の比較
 - 異なる飛行距離での測定

レプトンセクターでのCPの破れの測定 ニュートリノ質量構造の解明 +新物理が出てくるかも

θ13をめぐる競争

VS.

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E_{\nu}}$$

T2K(日本) NOvA(アメリカ) (NOvAは出遅れちゃった)

$$\begin{array}{c}
 & \theta & 1 \\
 & 0 & 0 \\
 & \mu & 0 \\
 & m & 2 \\
 & m & 2 \\
 & & \mu & 0 \\$$

$$P(\nu_{\mu} \to \nu_{e}) \approx \sin^{2}\theta_{23} \sin^{2} 2\theta_{13} \sin^{2} \frac{\Delta m_{32}^{2} L}{4E_{\nu}}$$

$$P(\bar{\nu}_e \to \bar{\nu}_e) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{31}^2 L}{4E}$$

T2K(日本) NOvA(アメリカ) (NOvAは出遅れちゃった) Double Chooz (フランス/日本も参加) RENO(韓国) Daya Bay(中国)

ニュートリノ質量の起源 $\mathcal{L}_{\text{mass}} = -\bar{\nu}_R m_D \nu_L - \frac{1}{2} \overline{\nu^c}_L m_L \nu_L - \frac{1}{2} \overline{\nu^c}_R m_R \nu_R + \text{h.c.}$

ニュートリノ貸量の起源 $\mathcal{L}_{mass} = -\overline{\nu}_R m_D \nu_L$ $-\frac{1}{2} \overline{\nu^c}_L m_L \nu_L - \frac{1}{2} \overline{\nu^c}_R m_R \nu_R$ + h.c. Dirac term Majorana term もしマヨラナ質量項を持てば・・・

ニュートリノ質量の起源

 $-\overline{
u^c}_L m_L
u_L$

 $-\overline{\nu^c}_R m_R \nu_R + \text{h.c.}$

Dirac term Majorana term もしマヨラナ質量項を持てば・・・

ダブルβ崩壊が起こるはず マヨラナ質量機構 $N_L N_R$ $V_R : M : V_L$ $H^0 H^0$ P(中性子)

0ニュートリノ

mass

 $-ar{
u}_R m_D
u_L$

昨年のICEPPシンポジウム渡辺さんのスライドより KamLAND-Zenが他を圧倒?

昨年のICEPPシンポジウム渡辺さんのスライドより KamLAND-Zenが他を圧倒?

各実験のインパクトの大きさとその時期(中島の独断と偏見による)									
	20	10 2		2012	2 20	13 20) 4 2 (QI5 20) 6
θ ₁₃ (accele rator)	T2K								
	NOvA								
θ ₁₃ (reactor)	Double Chooz								
	RENO			n an		ali Settisi terist		ining and in the second The second second Second second	
	Daya Bay								
ν _μ →ν _τ	OPERA								
Double beta decay	KamLAND -Zen その他								
	大勢								
ν _μ →ν _s	Sci-/Mini- BooNE								

