

MEG実験の最新結果

Ryu Sawada

20/Feb/2011

17th ICEPP Symposium

MEG collaboration : ~60 physicists from 13 institutes

Japan : ICEPP U. of Tokyo, Waseda U., KEK Italy : INFN&U.Genova, INFN&U.Lecce, INFN&U.Pavia INFN&U.Pisa, INFN&U.Roma U.S. : UC Irvine Switzerland : PSI, ETH Russia : JINR Dubna, BINP Novosibirsk

Physics Motivation

- Forbidden in the standard model
- New physics predict B.R. from 10⁻¹⁴ to 10⁻¹¹.
- Current upper limit (1.2×10⁻¹¹) is close to prediction.
- Discovery => evidence of new physics.
- MEG goal : ~10⁻¹³

Signal and Background

Dominant background is accidental.

Detector resolution is crucial.

The Experiment

PSI : most intense DC muon

Time line

Data samples

Analysis Method

Extended unbinned maximum likelihood analysis on number of events

• Fit is done by independent likelihood analysis tools to check possible systematic effects.

Signal : 55MeV calibration gamma (π⁰ decay) BG : Measured in sideband

RMD : Theoretical shape folded with resolution

Signal : Measured resolution BG : Measured in sideband RMD : Theoretical shape folded with resolution

Signal : Measured RMD peak BG : Flat RMD : Theoretical shape folded with resolution

|0|

2009 Run Sensitivity

Average 90% C.L. upper limit of toy MC with null signal.

Sensitivity : 6.1×10⁻¹²

Sideband fit result is consistent. Br $< 4-6 \times 10^{-12}$

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions.

2009 Preliminary Result

Event distribution after unblinding

Blue lines are 1(39.3 % included inside the region w.r.t. analysis window), 1.64(74.2%) and 2(86.5%) sigma regions. For each plot, cut on other variables for roughly 90% window is applied.

17th ICEPP Symposium, Feb20-23, 2011 R.Sawada

12

Fit Result

Nsig best fit = 3.0 Nsig < 14.5 @ 90% CL

Nsig=0は90%CL範囲内 (excludeされていない)

B.R. = Nsig / $1.0 \pm 0.1 \times 10^{12}$

Fitting was done by three groups with different parametrization, analysis window and statistical approaches, and confirmed to be consistent (Nsig best fit = 3.0-4.5, UL = 1.2-1.5×10-11)

17th ICEPP Symposium, Feb20-23, 2011 R.Sawada 3

4

Final analysis of 2009 run to be in public soon

After the preliminary analysis, we understood several sources of uncertainties better. Sensitivity is therefore better than the preliminary result.

- Treatment of magnetic field.
 - •Resulted in a better resolutions and smaller systematic uncertainties
- Relative alignment between photon and positron detectors.
 - Several measurements were carried out
 - Cosmic rays

•Calibration 17.6 MeV gamma ray with putting small lead cubes in front of the photon detector

- •AmBe source scan in front of the photon detector
- •Resulted in a smaller uncertainty.
- •In this year, we may take dedicated RMD data for the purpose

Perspective

- 2010 DAQ is finished; x1.9 times data statistics compared to 2009 run.
 - Better time resolution is expected thanks to upgrade of DRS
- 2011 is the first long-term physics run
- Possible improvements
 - Hardware
 - DAQ and trigger efficiency improvement with multiple event buffer
 - Positron detection efficiency improvement with thinner cables and layout.
 - New HV modules to reduce noise
 - Analysis
 - Positron
 - Software noise filtering
 - Use scintillation fiber data (not used so far)
 - Calibration with monochromatic calibration positrons (Mott scattering)
 - Improvement of magnetic field systematics
 - Time reconstruction
 - Gamma
 - Improvement of energy reconstruction algorithm

Performance summary and prospect

	2008	2009	2010 (preliminary)	2011 (preliminary)	2012 (preliminary)
Gamma Energy (%) Gamma Timing (psec) Gamma Position (mm) Gamma Efficiency (%) e+ Timing (psec) e+ Momentum (%) e+ Angle (mrad) e+ Efficiency (%) e+-gamma timing (psec)	2.0(w>2cm) 80 5(u,v)/6(w) 63 <125 1.6 10(φ)/18(θ) 14 148 2.0(0) (4.5(7))	$ \begin{array}{c} \leftarrow \\ > 67 \\ \leftarrow \\ 58 \\ \leftarrow \\ 0.61 (core) \\ 6.2 (core) / 9.4 \\ 40 \\ 151 (core) \\ 2.000 (2.007) \\ \end{array} $	1.5-2.0 ← ← 58-60 ← ← ← ← 120-130	1.2-2.0 ← ← ← 0.55-0.61 (core) ← / 7-9.4 (θ) ← 100-130	← ← ← ← ← ← 40-55 ←
Muon Decay Point (mm) Trigger efficiency (%)	3.2(Y)/4.5(Z) 66	3.3(Y)/3.3(Z) 91	← 92	2.8-3.3/3.0-3.3 92-98	← ←
DAQ time/ Real time (days)	48/78	2.9×10 ⁻ (300µm) 35/43	2.9×10 ⁷ 56/67	135/161	\leftarrow

Conclusion

- Preliminary results from 2009 data,
 - Sensitivity : 6.1×10⁻¹².
 - 90 % C.L. upper limit : 1.5×10⁻¹¹
 - Nsig=0 is in 90% C.L. region.
- 2010 run is finished and being analyzed.
- We will take data for another 2 years at least.
- We can clarify the result with a much better sensitivity.
 - If it was due to BG fluctuation : it would be excluded at >90%CL already with 2010 data
 - If it was due to signal : we would discover

2009年ランの最終結果は来週発表 詳しくは春の学会でお話しします