Belle II 実験のための Aerogel-RICH 読み出し用ASICの開発

- 研究背景
- Belle II 実験におけるAerogel-RICH
- ・読み出し用回路の開発状況
- Aerogel-RICHプロトタイプ試験
- ・まとめ

研究背景

17th ICEPP Symposium

Belle II実験におけるAerogel-RICH

Belle II検出器

K/π識別装置 Aerogel RICH

アップグレードの効果

2011/2/20

¹⁷th ICEPP Symposium

Aerogel RICH

Aerogel-RICHの原理

Aerogel Ring Image CHerenkov counter

放射角θ cを測定し、K/π 識別を行う

輻射体 シリカエアロゲル

Aerogel-RICHには1.05付近の屈折率が適切

	物質	屈折率	
	ガラス	1.47	
固体	シリカエアロゲル	1.006~ 1.07	
液体	水	1.33	
気体	空気	1.0003	
屈折率1.05のとき(@p=4 GeV/c)			
π^{\pm} :	140 MeV/c ² θ c :3	308 mrad	
K^{\pm} :	494 MeV/c ² 0 c :2	285 mrad	

シリカエアロゲル

17th ICEPP Symposium

光検出器 HAPD Hybrid Avalanche Photo Detector

HAPDの動作原理

🗘 高ゲイン、低ノイズの信号読み出し回路が必要

Aerogel-RICHの空間的制約

読み出し用回路の開発状況

現在開発中のSAシリーズをアナログ回路シミュレータ T-Spice を用いて動作検証を行なった

増幅性能

HAPD 1 p.e相当入力時の出力信号

gain 0	462 mV	
gain 1	260mV	
gain 2	177mV	
gain 3	129mV	

1p.e相当信号で線形性が保たれていることを確認できた

リーク電流とノイズの関係

HAPDの中性子損傷によりリーク電流が増加し、ショットノイズが増加

中性子損傷によりHAPDのリーク電流が増えた時、 読み出し用ASICのShaping timeの最適値は**100 ns**付近

shaping time調節機能

ST 0 : 100nsec ST 1: 110nsec ST 2: 130nsec ST 3: 200nsec

shaping timeを100ns付近に調節可能であることを確認

17th ICEPP Symposium

offset調節方法

Shaperを通した波形の波高分布

offset調節

ノイズの4oがV_{th}になるように各チャンネルのoffsetを調節する

⇒細かく広いレンジでoffset調節ができる機能が要求される

offset調節機能

offset_adj_fine_uni_HLHL_1224B Voltage (mV) 2.8mV

プロトタイプAerogel-RICHの ビームテスト

プロトタイプAerogel-RICH

17th ICEPP Symposium

2009.11 KEKB 富士テストビームライン で実施 2.0 GeV/cの電子ビーム HAPD 6台を使用

☆信号読み出しに旧版ASICを使用

読み出しシステム

エアロゲルとHAPDの配置 2011/2/20

まとめ

- HAPDからの信号読み出し用ASICを開発している
 ⇒Belle IIでの使用を想定した設計、開発は順調
- プロトタイプAerogel RICHを用いたビームテストで リングを観測することに成功

⇒6.7σ K/π識別相当

END

Back Up

Belleでの 粒子 識別

HAPDの中性子耐性

Belle IIで予想される年間中性子量 1×10¹¹ neutrons/cm² Bhabha散乱によってγ線が生じ、 それらが検出器外の構造体に当たり、 中性子などがバックグラウンド放射線となる

※茨城県東海村東京大学原子炉「弥生」にて照射

HAPD 中性子照射結果

2011/2/20

読み出し回路による中性子対策

中性子損傷によるS/N比低下を Shaping time調整によって補償する効果を確かめた

> 中性子照射前後のHAPDにLEDで光を入射させ 波高分布(ADC)より S/N比 を見積もる

S/N=(1光電子波高)/(ペデスタルノイズσ)

17th ICEPP Symposium

照射前

照射後

読み出し用ボード

リーク電流とノイズの関係

Shaping time

41

noise level

周波数解析によりノイズを求めた

noise level:約1400[e-] ····HAPD信号50000[e-]に対し十分なS/N

2011/2/20

17th ICEPP Symposium

ASIC FPGAとは

- ASIC : Application Specific Integrated Circuit
 - → 特定用途向け集積回路
 - ◆一度回路を設計、製作したら変更不可
 - ◆ 動作速度、集積度などがよい

- FPGA: Field Programmable Gate Array
 → 再書き換え可能プログラマブル論理回路
 - ・必要に応じて回路構成を プログラムによって変更可能

SAシリーズ

Belle IIでの使用に向けた最終シリーズとなるASIC

C	$\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	
J	10	′ 上

・チャンネル数:12(HAPD:144ch)
・gain(測定値):約71,89,122,291 [mV/fC]
・shaping time: 250,500,750,1000 [ns]
・offsetをそれぞれ16段階に粗調節、微調節可能

SA01

SA02

チャンネル数:36
gain(測定値):約19,25,35,72 [mV/fC]
shaping time: 250,500,750,1000 [ns]
offsetをそれぞれ16段階に粗調節、微調節可能

SA03の開発

- チャンネル数:36(HAPD:144ch)
- shaping timeを100ns付近に調節できるように設計
- offsetをそれぞれ16段階に
 粗調節、微調節できるように設計

これらの機能を確認するために動作シミュレーションを行った

HAPD の動作原理

SA02とSA03のlinearity

SA03 linearity

設計値 gain3に対して gain3:gain2:gain1:gain0 4/3 1 2

	SA02	SA03
gain 0	60(mV/fC)	61(mV/fC)
gain 1	38	36
gain 2	26	26
gain 3	20	20

12

アナログ処理ASIC SA02

17th ICEPP Symposium

Expected noise for HAPD at 10¹² n/cm²

"Current" is calculated by $n^2=1350^2/\tau+(13000)^2\tau$

・漏れ電流の増加量は、P層の厚さにのみ依存していることを確認。 (Gain:40)通常⇒P薄 漏れ電流の増加を半分程度に抑えられる。

Avalanche Gain

P層とN層の厚さ変えて中性子照射試験を実施