

東京大学 理学系研究科 物理学専攻 吉原 圭亮 16th ICEPP Symposium

Outline

- ◆時間反転対称性の破れとCPの破れ
- ◆ミュオン横偏極
- ♦KEK-PS E246実験
- ◆J-PARC E06(TREK)実験と検出器のアップグレード
- ◆ミュオンポラリメータ試験

◆まとめ

◆時間反転対称性の破れとCPの破れ

≻ 場の量子論の立場からはCPT定理が成り立っているのでCPの破れとTの破れは同値である。

▶ 現在、 K⁰ 系やB系で確立しているCPの破れはStandard Model でのCKMで説明できる。

▶ 物質優勢の説明には不十分である。

新しいCP-Violationの phaseを探すこと!

T-violation 探索実験

• Kaon Decay

我々の実験は $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu (K_{\mu 3})$ を用いて T-violationを探す。

* $K_{\mu3}$ はCKMに対してinsensitiveなのでnew physicsを探すのに都合がよい。

 $\sigma \cdot (\mathsf{P} \times \mathsf{P}) \qquad -(\mathrm{odd})$

σ:spin P:運動量

* $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu (K_{\mu 3})$ を用いた場合、 P_T は 10^{-5} まで 時間反転対称性の破れを探すことが出来る。

Data taking 1996-2000 ; Final result Phys. Rev. D73, 072005 (2006)

E246 Polarimeter

 e^+ は μ^+ のspinの方向に出やすいことを利用する。

Systematic Error and Result

	Canceled by			
Source	Σ_{12}	fwd/bwd	$\delta P_T \times 10^4$	
e^+ counter <i>r</i> -rotation	Yes	Yes	0.5	
e^+ counter z-rotation	Yes	Yes	0.2	
e^+ counter ϕ -offset	No	Yes	2.8	
e^+ counter <i>r</i> -offset	Yes	Yes	< 0.1	
e^+ counter z-offset	Yes	Yes	< 0.1	
\vec{B} offset (ϵ)	No	Yes	3.0	
\vec{B} rotation (δ_r)	No	Yes	0.37	磁場の不定性
\vec{B} rotation (δ_z)	No	No	5.3	
μ^+ counter y-offset	No	Yes	< 0.1	
CsI(Tl) misalignment	Yes	Yes	1.6	
K^+ stop distribution	Yes	Yes	<3.0	□ K ⁺ 静止位置の不足性
MWPC y-offset (C4)	No	Yes	2.0	
K^+ DIF background	Yes	No	<1.9	
$K_{\pi 2}$ DIF background	No	Yes	0.6	$ \longrightarrow $
μ^+ multiple scattering	Yes	No	7.1	μ Omultiple scattering
e^+ time spectrum	No	Yes	0.8	│ Decay planeの不定性
Decay-plane angle (θ_r)	No	Yes	1.2	
Decay-plane angle (θ_z)	No	No	0.66	
Uncertainty of α			1.3	
$\langle \cos \theta_T \rangle$ uncertainty			3.3	
P_T gradient			0.3	
Analysis	•••		0.9	$P_T = -0.0017 \pm 0.0023(stat) \pm 0.0011(syst)$
Total			11.4	$(P_T < 0.0050 : 90\% C.L.)$
				*

Statistical error dominant

◆J-PARC E06(TREK)実験と検出器のアップグレード

• Electronics and data taking: TKO \rightarrow KEK-VME & COPPER

11

Polarimeter = Drift chamber with stoppers + Muon field magnet

- Positron detection acceptanceが高い。(統計をあげる。)
- Decay vertexを決められる。(BGを減らす。)
- μ^+ multiple scatteringを減らす。(系統誤差を小さくする。)
- 角度分布を測ることができ、近似的にエネルギーを測れる。

 (Analyzing powerをあげる。)

◆ミュオンポラリメータ試験

AMPは全体の1/3の みカバーしている。

Beam Test 16th Nov.~2nd Dec. @TRIUMF

目的:本実験に効く系統誤差の評価。

●_π+ビーム試験 → Null Asymmetryの測定

 $\bullet \mu^+$ ビーム試験

青:VME-DiscriBoard 赤:CAEN ADC,TDC

Prototype Chamber

(最終デザイン)

基本的なパラメタ

Al Plate:24枚 Al Plate Thickness:2.5mm Plate Gap:8mm Anode Wire:20 μ m、約500本 HV:1950V μ^+ stop efficiency:~85%

*最終的には12個のPol. Chamber が使われる。

Y-Z平面に対してはDrift timeで、X
 方向に対してはcharge divisionを用いてのtracking が可能。

 Charge divisionは2mmの resolutionを達成。

Read out/IIAMP + VME-Discri Board(~100 mV) + TDC(or Decoupler Card + ADC)

ディグレーダの厚さを調節してAMPのカバーしている領域にビームが止まるようにした。

● 上図の1つ1つの■はWireを現わしている。

比較的広がりのあるビームのため、Al Plateに対して平行に入射したビームもだいたいAMPのカバーしている領域で止まっている。

16

Null Asymmetry Measurement

 π^+ のビームをつかってN<u>ull asymmetry</u>を確認する。

 $ightarrow e^+$ の異方性がない。

• π^+ はスピンを持たないので一様に μ^+ が放出される。したがって e^+ も一様に放出される。

● ビームを当てる箇所を変えながらチェンバー全体の応答を試験した。

DAQ rateは600~800Hzくらい。

Tracking Map

現在は2次元トラックでの解析を行っている。
 Tracking Mapは $\pi^+ \ge e^+$ を時間で分けている。
 μ^+ は、 π^+ と同じセル内でdecayするためにtrackとしては現れていない。

*ビームテストで解析に必要な十分な統計のデータが取れた。 現在、Null Asymmetryの解析途中

◆まとめ

- 我々はJ-PARKで $K^+ \rightarrow \pi^0 \mu^+ \nu_\mu(K_{\mu 3})$ を用いてT-violationを探す。
- 過去の実験のアップグレードをすることを考えている。
- 系統誤差を評価するためにポラリメータのビーム試験を行った。
- 十分な統計量のデータを取得することが出来た。
- 現在、以下のような解析を進めている。

✓wire efficiencyの評価 ✓Drift解析 ✓Asymmetryの評価

Backup

Model descriptions of P_T

$$P_T = \operatorname{Im} \xi \cdot \frac{m_{\mu}}{m_K} \frac{|\vec{p}_{\mu}|}{[E_{\mu} + |\vec{p}_{\mu}|\vec{n}_{\mu} \cdot \vec{n}_{\nu} - m_{\mu}^2/m_K]} \quad \operatorname{Im} \xi = \frac{(m_K^2 - m_{\pi}^2) \operatorname{Im} G_S^*}{\sqrt{2}(m_s - m_u)m_{\mu}G_F \sin \theta_C}$$

$$P_T \text{ is sensitive to scalar interactions}$$

- Multi-Higgs doublet (3 Higgs doublet) model
 - $\text{Im}\xi = (m_K^2/m_H^2) \text{Im}(\gamma_1 \alpha_1^*)$
 - $| \operatorname{Im}(\gamma_1 \alpha_1^*) | < 544 \ (m_H/\text{GeV})^2$ from the E246 limit
 - − $B \rightarrow \tau v X$ constraints also Im($\gamma_1 \alpha_1^*$) but weaker (<1900 (m_H/GeV)²)
 - − N-EDM and $b \rightarrow s\gamma$ constraint differently Im($\alpha_1 \beta_1^*$)
- SUSY with squark mixing
 - $\ \mathrm{Im} \xi \propto \mathrm{Im} [V_{33}{}^{H} V_{32}{}^{DL} V_{31}{}^{UR}] / m_{H}{}^{2}$
 - $-m_H \ge 140$ GeV from the E246 limit and no stringent limit from other modes
- SUSY with R-parity violation
 - $\ Im \xi^{\prime} \sim Im \ [\lambda_{2i2}(\lambda_{i12})^*], \qquad Im \xi^{\prime} \sim Im \ [\lambda^{'}_{21k}(\lambda^{'}_{22k})^*]$
 - No stringent limits from other modes

Exotic scalar interactions

$$P_T = {
m Im} \xi \cdot rac{m_\mu}{m_K} rac{|ec{p}_\mu|}{[E_\mu+|ec{p}_\mu|ec{n}_\mu\cdotec{n}_
u-m_\mu^2/m_K]}.$$
Kinematic factor

Generic four fermion interaction Lagrangian analysis

$$\mathrm{Im}\xi = \frac{(m_K^2 - m_\pi^2)\mathrm{Im}G_S^*}{\sqrt{2}(m_s - m_u)m_\mu G_F \sin\theta_C} \qquad ; \quad \xi = f \not / f_+$$

Effective field theory with Wilson coefficients

$$P_{\perp} \sim \left[0.38 \Im \mathfrak{m} C_S^K - 0.27 rac{p_K \cdot (p_
u - p_\mu) + m_\mu^2/2}{M_K^2 (f_+/f_T)} \Im \mathfrak{m} C_T^K
ight] \left(rac{ ext{TeV}}{\Lambda}
ight)^2$$

- Typical models with scalar interactions allowing a sizable P_T:
 - Multi-Higgs doublet model
 - SUSY with R-parity violation or large squark mixing

Three Higgs doublet model

K0.8 (K1.1-BR) for stopped K^{+}

- Low momentum (p=0.8 GeV/c) separated K^+ beam
- Simultaneous operation with K1.8/K1.8BR and KL
- Time share with K1.1, when it will be installed in

Development of Polarimeter Chamber

Prototype with the 1/5 size

- DC performance check of long cell structure
- Performance check of charge division method
- Efficiency measurement
- Beam test at FTBL with 2 GeV e^{+} beam in 2008.
- Results were reported to PAC-6

• Full Size Model (FSM)

- Tracking performance test
- Analyzing power/ beam polarization measurement
- Test of non-baisness or non-existence of spurious asymmetry due to:
 - Chamber structure (e.g. misalignments of wires)
 - Inhomogeneous inefficiency distribution
- Test of readout electronics; ASB etc
- Beam tests at TRUIMF using $\mu^{\scriptscriptstyle +}$ and $\pi^{\scriptscriptstyle +}$ beams in Nov. 2009

Timing chart

 π⁺で両隣のWireが鳴ったときに、真ん中のWireが鳴るかどう
 かでEfficiencyを定義した。

- 今後、BG低減等による、より信頼性のある評価を目指す。
 - 最終的にTREK実験に効くのはtrack detection efficiencyである。

 Vertex セルからみて上(CW)に出たか、下(CCW)に出たかで数を 数えてAsymmetryを算出した。

この場合、y軸方向がTREK実験でのTransverse方向に対応する。

Analyzing Power Measurement

● チェンバーを90度回転し、 μ^+ ビームを用いて試験をした。

• μ^+ が崩壊して出てくる e^+ がfwd、bwdのどちらにでるかの非対称 性らかAnalyzing Powerを見積もる。

CsI(TI) Readout

PIN diodeからAPDへ 変更する。

- CsI(Tl) + APD + Amplifier + FADC
- Electrons after APD : $\sim 2 \times 10^7$ @ 100 MeV
- Max count rate / module : $\sim 100 \text{ kHz}$
- Max K^+ decay rate : ~ 20 MHz
 - enough for the beam intensity in Phase 1
- Noise level : to be tested
- Module energy resolution : to be tested
 Energy resolution is determined by lateral shower leakage

Tracking System

Target

Muon Field Magnet

