PIENU実験における データ収集システムの開発 - COPPER 500 MHz Flash ADC -

大阪大学大学院理学研究科物理学専攻 久野研究室M2 伊藤 尚祐

16th ICEPP シンポジウム@白馬 2010年2月17日

PIENU実験 パイ中間子崩壊分岐比の測定原理 データ収集システム Flash ADCへの要求と問題

ADC間の時間のずれ
 サンプル数のずれ
 LEVEL0+1トリガー
 タイムスタンプ

まとめ

PIENU実験(1/2)

パイ中間子崩壊分岐比R= $\Gamma(\pi^+ \rightarrow e^+ \nu_e)/\Gamma(\pi^+ \rightarrow \mu^+ \nu_\mu)$ 分岐比:標準理論で精度良く計算できる - 理論值: R=1.2352±0.0001 x 10⁻⁴ (精度0.01%) - TRIUMF: R=1.2265±0.0034(stat)±0.0044(syst) x 10⁻⁴(精度0.5%) R=1.2346±0.0035(stat)±0.0036(syst) x 10⁻⁴ (精度0.5%) - **PSI**: e⁺ - PIENU実験目標: 精度<0.1% μ^+ *î*u' W^+ 物理:測定値とのずれにより新しい物理を検証 $\pi^{+!}$ - Non Universality:g_e≠g_µ(目標精度<0.05%) <u>ge gμ</u> \d; - 新しい相互作用:マススケール<1000 TeV ν_eν_μ 弱い相互作用の結合定数 - その他: Massive neutrinoなど e-µ Universality Test u ν_I ν_I χ_i^0 W^+ Process g_e/g_μ H^+ $\downarrow \widetilde{\nu}_J$ 0.9985 0.0016 π decay \pm K decay 0.022 0.994 \pm 0.9999 0.0021 χ_i τ decay + e_I d 1.10 +0.05 ν_e, ν_μ scattering

W decay

0.	011	Э
	-	

0.999

+

未発見粒子による相互作用の例

PIENU実験(1/2)

未発見粒子による相互作用の例

3

+

PIENU実験(2/2)

メンバー:カナダ、アメリカ、日本などから十数人 場所:カナダTRIUMF研究所 M13ビームライン スケジュール:3月からデータ取得再開

- 2005.12 プロポーザル受理
- 2006.12 実験原理の評価(M9Aビームライン)
- 2007.8 ビームラインデザイン(M9Aビームライン)
- 2008.5~ M13ビームラインの拡張
- 2008.10~12 M13ビームライン、検出器の評価
- 2009.4~ エンジニアリングラン
- 2009.7~2011.12 物理データ取得

関連実験:レプトン普遍性のテスト

- PEN実験@PSI: $\Gamma(\pi^+ \rightarrow e^+ + \nu e) / \Gamma(\pi^+ \rightarrow \mu^+ + \nu_\mu)$
- NA48/3実験@CERN: $\Gamma(K \rightarrow e + \nu_e) / \Gamma(K \rightarrow \mu + \nu_\mu)$

PIENU実験(2/2)

メンバー:カナダ、アメリカ、日本などから十数人 場所: カナダTRIUMF研究所 M13ビームライン スケジュール:3月からデータ取得再開 - 2005.12 プロポーザル受理 2006.12 実験原理の評価(M9Aビームライン) 、 ^{マ 8}ビームラインデザイン(M9Aビームライン) 人ラインの拡張 - 20 - 20 - 209 -CHE ^ ライン、検出器の評価 - 2009.7~~ 関連実験:レプトン音 **狭** ++
ν_μ) - PEN実験@PSI: Γ(π⁺→e⁺→ - NA48/3実験@CERN: Γ(K→e+ν_e, $(\rightarrow \mu + \nu_{\mu})$

ターゲットシンチ(Tg)での波形解析 - 500 MHz Flash ADC+1.6 GHz TDC - π →e, π →µ→e, BGをフィット ulse height [×4 mV] **60** ADC0 ADC1 **50** ADC0 Fitted pulse 40 ADC1 Fitted pulse 30 20 10 -1310 -1300 -1290 -1280 -1270 -1260 -1250 -1240 -1230 Time[ns] Pulse Fit 位置検出器(Si+WC)でのトラッキング - 60 MHz Flash ADC+1.6 GHz TDC - バーテックス カロリーメータ(Nal+Csl)でのe+エネルギー - 60 MHz Flash ADC - $E_{\pi e}(69.3 \text{ MeV})$, $E_{\pi \mu e}(0 \sim 52.3 \text{ MeV})_{e}$

ターゲットシンチ(Tg)での波形解析 - 500 MHz Flash ADC+1.6 GHz TDC - π →e, π →µ→e, BGをフィット ulse height [×4 mV] **60** ADC0 ADC1 **50** ADC0 Fitted pulse 40 ADC1 Fitted pulse 30 20 10 -1310 -1300 -1290 -1280 -1270 -1260 -1250 -1240 -1230 Time[ns] Pulse Fit 位置検出器(Si+WC)でのトラッキング - 60 MHz Flash ADC+1.6 GHz TDC - バーテックス カロリーメータ(Nal+Csl)でのe+エネルギー - 60 MHz Flash ADC - $E_{\pi e}(69.3 \text{ MeV})$, $E_{\pi \mu e}(0 \sim 52.3 \text{ MeV})_{e}$

ターゲットシンチ(Tg)での波形解析 - 500 MHz Flash ADC+1.6 GHz TDC - π →e, π →µ→e, BGをフィット ulse height [×4 mV] **60** ADC0 ADC1 **50** ADC0 Fitted pulse 40 ADC1 Fitted pulse 30 20 10 -1310 -1300 -1290 -1280 -1270 -1260 -1250 -1240 -1230 Time[ns] Pulse Fit 位置検出器(Si+WC)でのトラッキング - 60 MHz Flash ADC+1.6 GHz TDC - バーテックス カロリーメータ(Nal+Csl)でのe+エネルギー - 60 MHz Flash ADC - $E_{\pi e}(69.3 \text{ MeV})$, $E_{\pi \mu e}(0 \sim 52.3 \text{ MeV})_{e}$

ターゲットシンチ(Tg)での波形解析 - 500 MHz Flash ADC+1.6 GHz TDC - π →e, π →µ→e, BGをフィット ulse height [×4 mV] **60** ADC0 ADC1 **50** ADC0 Fitted pulse 40 ADC1 Fitted pulse 30 20 10 -1310 -1300 -1290 -1280 -1270 -1260 -1250 -1240 -1230 Time[ns] Pulse Fit 位置検出器(Si+WC)でのトラッキング - 60 MHz Flash ADC+1.6 GHz TDC - バーテックス カロリーメータ(Nal+Csl)でのe+エネルギー - 60 MHz Flash ADC - $E_{\pi e}(69.3 \text{ MeV})$, $E_{\pi \mu e}(0 \sim 52.3 \text{ MeV})_{e}$

データ収集システム(NIM+COPPER)

データ収集システム(GPIO+CD+VT48+VF48)

 π^+ beam rate: ~60 kHz, Trigger rate: ~700 Hz, Data rate: ~10MB/s

Flash ADCへの要求と問題

Flash ADCへの要求と問題

Flash ADCへの要求と問題

1. ADC間の時間のずれ(1/2)

WF: ADCのずれ

詳細

- 片方が8 ns(1/125MHz)ずれる
 - ▶ FPGAの動作クロック125 MHz
- 温度依存
 - ▶ デジタル回路のしきい値(?)
 - 微妙なタイミングのずれ(?)

問題点

- 2枚のADCが互いにずれる
- 個体差があり頻度<10⁻⁶のものを選択
 - ▶ テストベンチで20枚/40枚
 - ▶ DAQがハングするものも
- エンジニアリングラン
 - ▶ 頻度:10⁻⁷-10⁻²

1. ADC間の時間のずれ(1/2)

1. ADC間の時間のずれ(2/2)

解決策

結果

- Digital Clock Manager (DCM)
 - ▶ FPGAの125 MHzクロック制御
 - ▶ 以下を180°→90°(2 ns)きざみで
 - ●書き込みのための信号

 ✓Write Enable(WEN0+1)
 ✓Write Clock(WRCLK0+1)
 ADCx2で90°ずれている
 - ▶読み捨てのための信号
 ✓Read Enable(REN)
 ✓Read Clock(RCLK)

信号の配線

- 使用できるFINESSE:20枚/40枚→40枚すべて
- エラー頻度:10⁻⁷-10⁻²程度(温度依存)→0/10⁹events

1. ADC間の時間のずれ(2/2)

解決策

- 使用できるFINESSE:20枚/40枚→40枚すべて
- エラー頻度:10⁻⁷-10⁻²程度(温度依存)→0/10⁹events

2. サンプル数のずれ(1/2)

2. サンプル数のずれ(1/2)

2. サンプル数のずれ(2/2)

Physics OSAKA UNIVERSITY Department of Physics, Graduate School of Science

2. サンプル数のずれ(2/2)

3. LEVEL0+1トリガー(1/3)

デジタルサムトリガー(TIGC)

- ~120 chカロリーメータトリガー
 - ▶ アナログサム→デジタルサム
 - ▶ 分解能向上
- 2 usのトリガー決定時間
 - τ_μ=2.2 μs

3. LEVEL0+1トリガー(1/3)

デジタルサムトリガー(TIGC) - ~120 chカロリーメータトリガー ▶ アナログサム→デジタルサム ▶ 分解能向上 卡約2倍 - 2 usのトリガー決定時間 τ_µ=2.2 µs 6 µs 検出可能 t (1) 2 μs πタイミング t ₹ 検出不可能 4 µs 4 μs WFとTime Window

3. LEVEL0+1トリガー(1/3)

3. LEVEL0+1トリガー(2/3)

FPGA制御トリガーモジュール

- COPPERに配るGATE(データ保持用)とCOPPER TRIGGER(データ転送用)を制御
- GPIOモジュールのFirmwareによりLEVEL0+1トリガーに対応

- CLEAR: LEVEL1 がこなかったときの、2.5 us後FIFOを初期化しゲートを開け直す

- only LEVEL 1:キャリブレーション用トリガーはLEVEL1のみ
 - ・データ保持とデータ転送を以前と同じようにとるため

3. LEVEL0+1トリガー(3/3)

- 約2 usデータ保持を達成
- キャリブレーショントリガー用にLEVEL1のみでの動作確認
- LEVEL1が来なかった場合の初期化確認

3. LEVEL0+1トリガー(3/3)

- 約2 usデータ保持を達成
- キャリブレーショントリガー用にLEVEL1のみでの動作確認
- LEVEL1が来なかった場合の初期化確認

4. タイムスタンプ

イベントビルドシステム

- 他のモジュールのトリガーアップデートに伴ない が必要に タイムスタンプ
 - FINESSE FADCカードのFirmwareにて実装(64 bit 62.5 MHz)

結果

- COPPER上の4枚のFINESSEサブボードにおいて同じ値(1 M events)
- 桁上がり(64 bits)でのデータの安定性チェック(100 k events)
 - > 0x7fff ffff ffff ffff → 0x8000 0000 0000 0000

4. タイムスタンプ

Physics OSAKA UNIVERSITY

- COPPER上の4枚のFINESSEサブボードにおいて同じ値(1 M events)
- 桁上がり(64 bits)でのデータの安定性チェック(100 k events)
 - > 0x7fff ffff ffff ffff → 0x8000 0000 0000 0000

4. タイムスタンプ

Physics OSAKA UNIVERSITY

PIENU実験でのCOPPERシステム

- 2009夏から物理データ取得開始
- 8 bit 500 MHz FADC
 - DCMによるクロックの90°きざみの調整
 - ▶ 2枚のADC間ずれ率(20/40枚→すべて、10⁻²-10⁻⁷→0/10⁹ events)
 - ▶ 原因の理解によりデータの信頼性が向上

トリガー前の波形取得

- ラッチ回路追加→サンプル数が安定(→0/10⁷events)
 - ▶ 原因の理解によりデータの信頼性が向上
- LEVELO+1トリガーの追加→2 µsデータを保持
 - ▶ 古いミューオン起源のバックグラウンドを約半分に

イベントビルドシステム

- 安定性の高いタイムスタンプにより
- 新しいイベントビルドシステムに対応
 - ▶ PIENUだけでなく、他の実験への応用が期待