COMET実験のためのMPPC読み出し カロリメータの開発

2010年2月17日 第16回 ICEPPシンポジウム 大阪大学久野研究室M2 立元琢土

目次

- <u>イントロダクション</u>
 - **_** COMET実験について
 - COMET実験に用いる電磁カロリメータについて
 - **-** 光検出器MPPCについて
- <u>カロリメータ**R&D**</u>
 - 研究概要
 - MPPCとLYSOを組み合わせたカロリメータ試作機による電子ビームテスト
 - ビームテストより得られた結果を用いての実機カロリメータの性能評価
- <u>まとめ</u>

イントロダクション

近年開発された光検出器であるため研究が必要

カロリメータR&D

場所:東北大学電子光物理学研究センター

ビームテストで得られた結果を用いての 実機カロリメータの分解能評価

ビームテストで得られた結果を用いての実機カロリメータの分解能評価

実機カロリメーターの分解能 σall ≒ 光子統計のばらつき σp.e

光子統計のみを考えて実機カロリメータの評価 I辺3cmの6角柱を並べたカロリメータデザインに した場合、ビームテスト時99.78[MeV]と同じ光量 が得られると仮定

 $\sigma_{p.e} = 1/\sqrt{m \times N_{p.e}}$ m:MPPCの個数

N_{p.e}:311±72[p.e]

(ビームテスト時の検出光子数)

1 セグメント当たりの	$\sigma p.e$
MPPC 個数	(%)
1	5.7 ± 0.7
2	4.0 ± 0.5
3	3.3 ± 0.4

*ビームテストで用いた3mm×3mm、 ピクセルサイズ25µmの**MPPC**を仮定

まとめ

- μ-e転換探索実験COMETを計画
- COMETに用いるカロリメータとして光検出器MPPCと無機結晶LYSOの使用を検討して いる。
- これまで前例のない、MPPCを無機結晶へ直張りした検出器による100MeV帯の電子 ビームテストを行い、シミュレーションと比較。検出光子数311±72[p.e/ch]を得た。
- 得られた検出光子数を用いてCOMET用実機力ロリメータの分解能を見積もり、実機力 • ロリメータにおいて以下の分解能が得られることがわかった。

l セグメント当た りの MPPC 個数	σ p.e (%)
1	5.7±0.7
2	4.0±0.5
3	3.3±0.4

1 セグメント当た りの MPPC 個数	б р.е (%)
1	4.0±0.5
2	2.8±0.3
3	2.3±0.3

ピクセルサイズ:25μm(14400ピクセル) ピクセルサイズ:50μm(3600ピクセル) ピクセルサイズ:100μm(900ピクセル) MPPC1つ当たりの検出光子数:311±71 MPPC1つ当たりの検出光子数:621±142 MPPC1つ当たりの検出光子数:807±185

l セグメント当た りの MPPC 個数	σ p.e (%)		
1	3.5±0.4		
2	2.5±0.3		
3	2.0±0.2		

• back up

Figure 1.4: Predicted branching ratios for $\mu^- - e^-$ conversion in SUSY-GUT. μ is one of the SUSY parameters, and $\mu > 0$ (left) and $\mu < 0$ (right).

現在のµ-e転換過程の感度

光検出器MPPCと無機結晶LYSOを組み合わせたカロリメータの開発

		LYSO	PbWO₄	Nal(TI)
· ·	密度(g/cm³)	7.40	8.3	3.67
The	相対光量	83	0.083	100
	蛍光減衰時間(ns)	40	30	230
1	潮解性	無し	無し	有り

→無機シンチレータとしてLYSOの使用を検討

ロシアの結晶開発グループよりΦ60mm×200mmの結晶の提供を受けた。

ピクセルサイズ	検出効率	MPPC1 個あたり	1セグメント当たりの	$\sigma p.e$			
(ピクセル数)	(%)	検出光子数	MPPC 個数	(%)			
			1	5.7 ± 0.7			
			2	4.0 ± 0.5			
25 µ m	25%	311 ± 71	3	3.3 ± 0.4			
(14400)			4	2.8 ± 0.3			
			5	2.5 ± 0.3			
			6	2.3 ± 0.3			
			1	4.0 ± 0.5			
			2	2.8 ± 0.3			
50 µ m	50%	621 ± 142	3	2.3 ± 0.3			
(3600)			4	2.0 ± 0.2			
			5	1.8 ± 0.2			
			6	1.6 ± 0.2			
			1	3.5 ± 0.4			
			2	2.5 ± 0.3			
100 µ m	65%	807 ± 185	3	2.0 ± 0.2			
(900)			4	1.7 ± 0.2			
			5	1.6 ± 0.2			
			6	1.4 ± 0.2			

実機における分解能の見積もり

<u>カロリメータへの要求性能</u>

- エネルギー分解能 <5%(@100MeV電子)

$$\sigma_{all} = \sqrt{\sigma_{ed}^2 + \sigma_{p.e}^2 + \sigma_{noise}^2}$$

σ all:実機カロリメーターのエネルギー分解能
σ ed:結晶内でのエネルギー損失のばらつき
σ p.e:光子統計によるばらつき

σ noise:電気ノイズによる信号のばらつき

LYSOとその他の無機結晶

物理量	密度	屈折率	融点	光量	最大	蛍光減衰	輻射長	モリエール	dE	d(LY)	潮解	減衰
					蛍光波長	時間		半径	/dx	/dT	性	距離
単位	g/cm ³		°C	a.u.	nm	ns	cm	cm	MeV/cm	%/°C		cm
LYSO	7.40	1.82	2050	83	420	40	1.14	2.07	9.6	-0.2	無	20.9
NaI(Tl)	3.67	1.85	651	100	410	230	2.59	4.13	4.8	-0.2	有	42.9
BGO	7.13	2.15	1050	21	480	300	1.12	223	9.0	-0.9	無	22.8
BaF ₂	4.89	1.50	1280	36	300	630	2.03	3.1	6.6	-1.3	無	30.7
				3.4	220	0.9				~ 0		
CsI(Tl)	4.51	1.79	621	165	560	1300	1.86	3.57	5.6	0.3	小	39.3
CsI(pure)	4.51	1.95	621	5.6	420	3.6	1.86	3.57	5.6	-1.3	小	39.3
				2.3	310	1.1						
PbWO ₄	8.3	2.20	1123	0.083	425	30	0.89	2.00	10.2	-2.7	無	20.7
				0.29	420	10						
GSO(Ce)	6.71	1.85	1950	3	430	600	1.38	2.23	8.9	-0.1	無	22.2
				30	430	56						

表 B.1: 一般的な無機結晶シンチレータの特性表。[27]