

ILC実験における余剰次元模型の 右巻きニュートリノに関する測定精度 の評価

2010年 ICEPPシンポジウム@白馬

Nの相互作用

Nはどのように観測されるのか
Nの相互作用

Nは弱い相互作用によりHiggsを介してSMの粒子と反応
 NはCC interactionによる崩壊を用いて再構成される
 MNS行列によりフレーバーの混合が生じる

研究の流れ

1、イベントジェネレータの作成 2、シミュレーション 3、物理事象の再構成 4、バックグランドの除去 5、シグナルの精度の評価

シグナルの反応断面積

Ecm=500GeV		
KK mode	cross section(fb)	
1st KK	378.64	
2nd KK	14.61	

Ecm=1TeV		
KK mode	cross section(fb)	
1st KK	427.00	
2nd KK	25.29	
3rd KK	6.74	
4th KK	2.08	

バックグラウンド

バックグラウンド:終状態が1レプトン+2jet になり得るもの

バックグラウンドの反応断面積

Background	cross section (fb)	
	500GeV	1TeV
e∨W	4462	10320
WW -> lvqq	660	280.3
ZZ -> llqq+vvqq	163	32.79
tt	531	29.43

バックグラウンドの反応断面積は大きい

検出器シミュレーション

イベントジェネレータの情報 → ILDのクイックシミュレータへ

500 GeVの解析 [1st KK N 2nd KK N

Nの質量の再構成

再構成した粒子の情報からNの質量を再構成

1TeVの解析 「1st KK 2nd KK 3rd KK 4th KK

バックグラウンドの除去		
► レプトンエネルギーカット	 ▶ 10 GeV < 1st < 100 GeV ▶ 10 GeV < 2nd < 500 GeV ▶ 10 GeV < 3rd < 700 GeV ▶ 10 GeV < 4th < 540 GeV 	
➡ 2jetの質量カット	▶ 60 GeV < W mass < 100 GeV	
► 2jetのエネルギーカット	 ▶ 80 GeV < 1st < 290 GeV ▶ 180 GeV < 2nd < 560 GeV ▶ 220 GeV < 3rd < 470 GeV ▶ 280 GeV < 4th < 440 GeV 	
● シグナル領域選択	 ▶ 90 GeV < 1st < 110 GeV ▶ 280 GeV < 2nd < 320 GeV ▶ 480 GeV < 3rd < 520 GeV ▶ 670 GeV < 4th < 730 GeV 	

Back up

ラグランジアン

$$\begin{aligned} \mathcal{L}_{\text{int}} &= -\frac{g}{\sqrt{2}} \bar{e} W U_{\text{MNS}} P_L \nu + h.c. \\ &- \frac{g}{\sqrt{2}} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{e} W X P_L N^{(n)} + h.c. \\ &- \frac{g_Z}{2} \sum_{n=1}^{\infty} \frac{1}{\pi R m_n} \bar{\nu} \notZ \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_L N^{(n)} + h.c. \\ &- \frac{g_Z}{2} \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 m_n m_m} \bar{N}^{(n)} \notZ \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} \\ &- \sum_{n=1}^{\infty} \frac{1}{\pi R v} h \bar{\nu} \left(\frac{2m_{\nu}}{\mathcal{M}}\right)^{1/2} \mathcal{O} P_R N^{(n)} + h.c. \\ &- \sum_{n,m=1}^{\infty} \frac{1}{\pi^2 R^2 v m_m} h \bar{N}^{(n)} \left(\frac{2m_{\nu}}{\mathcal{M}}\right) P_L N^{(m)} + h.c. \end{aligned}$$

24