Recent result from Belle

ICEPP Symposium 2月14日~17日

谷口 七重(KEK)

長野県白馬

contents

- Introduction
- $B \rightarrow XsH$
 - exclusive K^(*) II
 - inclusive

b→s transition

• Flavor Changing Neutral Current

 \bullet

 $b \rightarrow s$ transition

- Flavor Changing Neutral Current
 - 標準理論ではループダイアグラムを介して可能
 - SUSYとの結合も同じオーダー(1-loop)で可能

New World Record Luminosity 2.11 x 10³⁴ cm⁻² s⁻¹ achieved with crab cavities at KEKB (June 17, 2009, another world record since May 3rd) [KEK press release (Japanese), interactions.org, CERN Courier]

Integrated luminosity reached 1000 fb⁻¹ [KEK press release (Japanese), interactions.org]

Belle detector

side view

鉄+RPC(スパークチェンバーのようなもの)の層

B→Xsll

• ペンギン or ボックス ダイアグラム

●豊富な観測量

- Branching fraction $(10^{-7} \sim 10^{-6})$
- Isospin Asymmetry
- Forward-Backward Asymmetry

B→Xsll

- Wilson係数にも感度がある
 - Wilson係数はSMでは精度よく計算されている
 - new physicsの寄与はそこからのずれとして現れる
- 3つのWilson係数が寄与

Operator Product Expansion

- Operator Product Expansion
 - 実効オペレータOiとWilson係数Ciを使ってハミルトニアンを書き下す

B→Xsll

- Wilson係数にも感度がある
 - Wilson係数はSMでは精度よく計算されている
 - new physicsの寄与はそこからのずれとして現れる
- 3つのWilson係数が寄与
 - C7: electromagnetic penguin diagram
 - $|C_7| \sim 0.33$ from B.F(B $\rightarrow Xs\gamma$)
 - ◆ b→sll はC7の符号に感度がある
 - C₉ : vector part of weak diagram
 - C₁₀ : axial vector part of weak diagram

inclusive/exclusive

Inclusive

反応 a + b → c + Xにおいて、cのみを観測してXに含まれているいろいろな粒
子を観測しないときこれをinclusive反応と呼ぶ

• Exclusive

● これに対して、 $a + b \rightarrow c_1 + c_2 + .. c_n$ のように終状態の限定した粒子は全て 観測する反応をexclusive反応と呼ぶ

exclusive $B \rightarrow K^{(*)}ll$

outline

- Event selection and reconstruction
- Background suppression
- Branching fraction
- Isospin Asymmetry
- Forward-backward asymmetry

exclusive mode $B \rightarrow K^{(*)}ll$

• Particle ID

• K/π

- ♦ CDC (dE/dx)
- ♦ TOF
- ACC (number of photoelectron:Npe)
- electron ID
 - ✦ ECL (position, shower shape)
 - ♦ CDC (dE/dx)
 - ✦ ACC (Npe)

muon ID

- KLM (range, hit position)
- ♦ CDC (tracking)

exclusive mode $B \rightarrow K^{(*)}ll$

Reconstruction

• Ks

- ππのうち崩壊点がIPから離れたもの
- $|M_{\pi\pi} M_{Ks}| < 15 GeV/c^2$
- neutral pion
 - 2γから再構成

115< M_{YY} <152 GeV/c²
K*
M_{Kπ}
B meson
M_{bc} =
$$\sqrt{(E_{\text{beam}}^*/c^2)^2 - |\vec{p}_B^*/c|^2}$$
5.27GeV/c² < M_{bc} < 5.29GeV
|M_{Kπ} - M_{K*}| < 80MeV
5.2GeV/c² < M_{bc} < 5.29GeV/c²
M_{Kπ} < 1.2GeV/c²

 $|\Delta E| < 35$ MeV for $K^{(*)}\mu^+\mu^ -55 < \Delta E < 35$ MeV for $K^{(*)}e^+e^-$

 $< 5.29 {\rm GeV}/c^2$

 $|< 80 \mathrm{MeV}/c^2$

 $< 1.2 \mathrm{GeV}/c^2$

- continuum
- Bのセミレプトニック崩壊
- $B \rightarrow J/\psi(\rightarrow II)K^{(*)}, \psi(\rightarrow II)K^{(*)}$

- continuum background
 - ee \rightarrow qq (q=u,d,s,c)
 - 終状態に運動量の大きなKaonやpionをたくさん作る
 - 数が多い(~x3)

	BB event	continuum event
崩壊点の差 Δz	cτβγ ~ 200μm	~0 (ほぼ一点から)
崩壊生成物 (event shape)	等方的(Bは重いのでほぼ静止)	2ジェット状(軽いクォークが大きな運動量を持つ)
崩壊角分布 θ_B	sin ² 0 (Y(4S)(J=1),B(J=0))	~uniform (ランダムな組み合わせ)

 R_{I}

 R_2

Event shape

- 終状態粒子の運動量の情報を使う
- Fox-Wolfram momentを応用して、18個の変 数(xk)を定義、signalとbackgroundの分離が 最適となる係数(Fisher discriminant; F)を計算

• $B \rightarrow J/\psi(\rightarrow \parallel) K^{(*)}$, $\psi(\rightarrow \parallel) K^{(*)}$

- 終状態の粒子の組み合わせがsignalと同じ
- 運動学的な変数が signal に似たピークを作る
- フィットで分離しにくい
- di-leptonのinvariant mass がJ/ψやψの付近にある事象は除く

Results

• data set = 657x10⁶ B中間子対

- Branching fraction
 - q²=(M_I)の関数として微分分岐比を求めるためq²を6ビンに分割
- Isospin asymmetry
- Forward-backward asymmetry

Results

• data set = 657x10⁶ B中間子対

- Branching fraction
 - q²=(M_{II}c²)の関数として微分分岐比を求めるためq²を6ビンに分割
- Isospin asymmetry
- Forward-backward asymmetry

比をとることで理論の不定性を ある程度キャンセルできる (系統誤差も)

Branching fraction

Branching fraction

isospin asymmetry

 $A_{I} = \frac{(\tau_{B^{+}})/(\tau_{B^{0}})\mathcal{B}(K^{(*)0}l^{+}l^{-}) - \mathcal{B}(K^{(*)\pm}l^{+}l^{-})}{(\tau_{B^{+}})/(\tau_{B^{0}})\mathcal{B}(K^{(*)0}l^{+}l^{-}) + \mathcal{B}(K^{(*)\pm}l^{+}l^{-})}$

[•] SMではAIは小さい<10%

BELLE : PRL 103, 171801 (2009)

BABAR: ARXIV: 0804.4119 (2008) 384M BB

isospin asymmetry

B→K^{*}ll angular analysis

FLやAFBからWilson係数を 決定することができる

● K^{*} 偏極度(F_L)

$$\frac{d\Gamma}{d\cos\theta_{K*}} = \frac{3}{2} F_L \cos^2\theta_{K*} + \frac{3}{4} (1 - F_L) \sin^2\theta_{K*}$$

Forward-backward Asymmetry (AFB)

angular analysis

FABのみ

float

SuperKEKB/Belle II

New Physics Scenario

15

10

Minimum Flavor Violation

• flavor transitionはCKM起源, 最低限のSUSY

15

SUSY mass ~1TeV(heaw)

◆ charged Higgs, stop ~ 数函(

inclusive B→Xsll

- semi-inclusive
 - 36のexclusiveモードの和: K/Ks + 0-4π + lepton pair

M_{xs} > 1.0GeVで初めて3σのeventを観測

inclusive $B \rightarrow X_s ll$

- 5つのbinに分ける
- それぞれの分岐比を測定
- 5つの結果をcombineする
- systematic errorを小さくできる

 $\mathcal{B}(B \to X_s ll) = (3.33 \pm 0.80^{+0.19}_{-0.24}) \times 10^{-6}$

inclusive $B \rightarrow X_s ll$

● SMの予想とよく合っている

summary

new physics のプローブとして注目

B→Xsll analysis

- 豊富な観測量
- F_{AB}(q^{2~}小)にずれ? flipped-C₇ like
- inclusive modeではSM like

