Higgs Boson Search in the VBF Channel of NMSSM with the ATLAS detector

Khaw Kim Siang
University of Tokyo
$16^{\text {th }}$ February 2010

Outline

- Introduction (LHC and ATLAS)
- Physics Motivation of NMSSM Higgs
- Event Topology
- Analysis Algorithms
- Result
- Conclusion
- Future Plan

LHC and ATLAS (1)

Large Hadron Collider (LHC)

Circumference ~ 27 km
Superconductor Magnet = 8.33T @ T=1.9K
10^{11} protons per bunch, 40 MHz
World Highest Energy (ECM=14 TeV)
Designed Luminosity of $L=10^{34} \mathrm{~cm}^{-2} s^{-1}$

LHC and ATLAS (2)

A Toroidal LHC ApparatuS (ATLAS)
Multipurpose Detector
Superconducting Solenoid=2T
Width 44 m , Height 22m, 7000t

Physics at ATLAS

Aiming at the discovery of Higgs, SUSY, Extra Dimension, BlackHole,???

ATLAS Particle Detector

Proton beams

Proton beams
My work is "NMSSM Higgs Search" using this detector.

What is NMSSM?

- Next-to-the-Minimal Super Symmetry Standard Model

- Large Fine Tuning is needed in Standard Model. (Large Radiative Correction on SM Higgs mass, Naturalness Problem)
- By introducing Super symmetry Partner (fermion \Leftrightarrow boson), \rightarrow logarithm divergence \rightarrow Naturalness Problem solved
- Minimal SUSY \rightarrow MSSM, but with μ-problem (origin of mass term in Lagrangian, $\mu \mathrm{HuHd}$)
($\mu \sim$ ElectroWeak Scale (Phenomenological))
- By adding a SM singlet superfield, $\mathrm{S} \rightarrow$ NMSSM
$\rightarrow \mu=\lambda\langle S\rangle, \mu$ as function of $\langle S\rangle \rightarrow \mu$-problem solved

Higgs in SM, MSSM and NMSSM

For NMSSM

Higgs production

Gluon Fusion

Vector Boson Fusion

Associative Production with W, Z

Associative Production with top, bottom

Typical cross section (SM) is about 3 picobarn (pb) for Vector Boson Fusion (VBF)

For NMSSM, some corrections are needed. $\rightarrow \sigma=2.9 \mathrm{pb}$ @ 10TeV (~SM)

Higgs Production Cross Section (SM)

Event Topology

- 2 high pt forward jets ($O(\mathrm{~W}, \mathrm{Z}$ mass)) \rightarrow apply high Jet Pt cut
- No activity in the central region, only Higgs decay products are detected.
\rightarrow QCD BG suppressed
- By focusing on $4 \tau \rightarrow h \mu h \mu$, we find signals where taujet- μ are very near to each other.

$>\operatorname{Br}(\tau \rightarrow \mathrm{h}) \sim 65 \%$: hadronic decay of tau
$>\operatorname{Br}(\tau \rightarrow \mu \mathrm{vv}) \sim 17 \%$: leptonic decay of tau

Background

Examples of background from QCD. When the c-jets are mis-ID as Taujets, they look like VBF topology. However, they are reducible backgrounds.

Introduction of my analysis

- In NMSSM model, the SM-like Higgs, h will decay dominantly in the channel $\mathrm{h} \rightarrow$ aa when $m_{a}<2 m_{b}$.
- At the same time, the CP-odd singlet, a will decay mainly into 2 taus. $\operatorname{Br}(\mathrm{a} \rightarrow \tau \tau)=90 \%$.
- In this analysis, we focus on the $h \rightarrow$ aa $\rightarrow 4 \tau$ channel, where h is produced through vector boson fusion process.
- Since $\tau \rightarrow$ evv mode is quite complicated and requires special reconstruction algorithm, only $h \rightarrow a a \rightarrow 4 \tau \rightarrow 2 \mu 2 h$ is discussed here.

$$
\sigma^{*} \mathrm{Br}(\mathrm{NMSSM} \text { VBF } \mathrm{h} \rightarrow 2 \mathrm{a} \rightarrow 4 \tau \rightarrow 2 \mathrm{~h} 2 \mu)=437 \mathrm{fb}
$$

- My analysis is based on data of $30 \mathrm{fb}^{-1}$ (<1 year with designed luminosity.)

Samples

Signal and backgrounds are studied using full simulation data \rightarrow GEANT4 Simulation with Detector Response at ATLAS (10 TeV)

Signal	Event Generator	Cross section (pb)	Size
NMSSM VBF Higgs	PythiaMadgraph	0.437	235 k
Background	Event Generator	Cross section (pb)	Size
ttbar	McAtNloJimmy	205.5	1960 k
bbar	AlpgenJimmy	5630	377 k

Singal with Higgs mass $=100 \mathrm{GeV}$, CP-odd singlet mass $=5 \mathrm{GeV}$ is used.

Cut Based Event Selection

Basically, to select good events, sequential cuts are applied as to separate the signal from the backgrounds.
> Njet=>2, all with $\mathrm{pT}>20 \mathrm{GeV}$
> j1_eta*j2_eta<0
$>$ dEta of $1^{\text {st }}$ Jet-2 ${ }^{\text {nd }}$ Jet
> Missing ET

Apply |dEta|>3.6
> Bjet Veto
> $\mathrm{Mjj}>500 \mathrm{GeV}$
> Central Jet Veto
> 2 mu 2 tau

Apply MET > 25 GeV

Event Selection

Event Selection	vbf	bbar	ttbar
Cross Section (pb)	0.437	9582	205.5
Start : Total Event	$1.3 \mathrm{E}+04$	$2.8 \mathrm{E}+08$	6.0E+06
Luminosity(fb-1)	30.0	30.0	30.0
Njet=>2, all with pT > 20 GeV	$1.2 \mathrm{E}+04$	$1.5 \mathrm{E}+08$	$6.0 \mathrm{E}+06$
j1_eta*j2_eta<0	$6.0 \mathrm{E}+03$	$5.6 \mathrm{E}+07$	2.2E+06
Jet Seperation dn>3.6	3.1E+03	7.7E+06	2.0E+05
Bjet Veto	$3.1 \mathrm{E}+03$	3.7E+06	$6.0 \mathrm{E}+04$
$\mathrm{Mjj}>500 \mathrm{GeV}$	2.2E+03	9.4E+05	4.1E+04
Central Jet Veto	920	$4.2 \mathrm{E}+05$	3.9E+03
2 mu 2 tau	19.7	6.2E+03	12.0
MET $>25 \mathrm{GeV}$	17.6	660	9.4
Mu-Tau_dR<0.5 pairs	17.0	660	0(9.4)
Opposite sign or Qtau=0	15.5	92	0(<9.4)
$0<x _v i s 1, \mathrm{x}$ _vis2 < 1	12.8	0(92)	$0(<9.4)$
$\|\cos (\mathrm{dphi})\|<0.95$	11.5	0 (<92)	$0(<9.4)$
80 GeV < Higgs mass < 120 GeV	11.0	0 (<92)	$0(<9.4)$

It seems good but the statistical uncertainty is too huge.
(xsec: QCD>>Higgs)

Factorization Method

- Due to the lack of statistics for BG, factorization method is applied where the event selection is divided into mainly 2 categories:

Factorization Method

Event Selection	VBF	bbar	ttbar
Start : Total Event	$1.3 \mathrm{E}+04$	$2.8 \mathrm{E}+08$	$6.0 \mathrm{E}+06$
Luminosity(fb-1)	30.0	30.0	30.0
Njet $=>2$, all with $\mathrm{pT}>20 \mathrm{GeV}$	$1.2 \mathrm{E}+04$	$1.5 \mathrm{E}+08$	$6.0 \mathrm{E}+06$
j1_eta*j2_eta<0	$6.0 \mathrm{E}+03$	$5.6 \mathrm{E}+07$	$2.2 \mathrm{E}+06$
Jet Seperation dq>3.6	$3.1 \mathrm{E}+03$	7.7E+06	$2.0 \mathrm{E}+05$
Bjet Veto	$3.1 \mathrm{E}+03$	3.7E+06	$6.0 \mathrm{E}+04$
Mjj > 500GeV	$2.2 \mathrm{E}+03$	$9.4 \mathrm{E}+05$	$4.1 \mathrm{E}+04$
Central Jet Veto	920	$4.2 \mathrm{E}+05$	$3.9 \mathrm{E}+03$
Event Selection	VBF	bbar	ttbar
Start : Total Event	$1.3 \mathrm{E}+04$	$2.8 \mathrm{E}+08$	$6.0 \mathrm{E}+06$
Luminosity(fb-1)	30.0	30.0	30.0
2 mu 2 tau	$1.9 \mathrm{E}+02$	$1.6 \mathrm{E}+06$	$2.5 \mathrm{E}+03$
MET > 25 GeV	$1.6 \mathrm{E}+02$	$7.3 \mathrm{E}+04$	$9.0 \mathrm{E}+02$
Mu-Tau_dR<0.5 pairs	$1.5 \mathrm{E}+02$	$6.4 \mathrm{E}+04$	$7.7 \mathrm{E}+02$
Opposite sign or Qtau=0	$1.0 \mathrm{E}+02$	$1.4 \mathrm{E}+04$	$2.4 \mathrm{E}+02$
$0<x _v i s 1, x _v i s 2<1$	$9.4 \mathrm{E}+01$	$7.7 \mathrm{E}+03$	$1.2 \mathrm{E}+02$
$\mid \cos ($ dphi) $\mid<0.95$	$8.6 \mathrm{E}+01$	$6.0 \mathrm{E}+03$	$9.9 \mathrm{E}+01$
80 GeV < Higgs mass < 120 GeV	8.1E+01	$7.3 \mathrm{E}+02$	$3.1 \mathrm{E}+01$

Background estimation

Event Selection	VBF (normal)	VBF	bbar	ttbar
Start : Total Event	$1.3 \mathrm{E}+04$	$1.3 \mathrm{E}+04$	$2.8 \mathrm{E}+08$	$6.0 \mathrm{E}+06$
Luminosity(fb-1)	30.0	30.0	30.0	30.0
Njet=>2, all with pT > 20 GeV	$1.2 \mathrm{E}+04$	$1.2 \mathrm{E}+04$	$1.5 \mathrm{E}+08$	$6.0 \mathrm{E}+06$
j1_eta*j2_eta<0	$6.0 \mathrm{E}+03$	$6.0 \mathrm{E}+03$	$5.6 \mathrm{E}+07$	$2.2 \mathrm{E}+06$
Jet Seperation dn>3.6	$3.1 \mathrm{E}+03$	$3.1 \mathrm{E}+03$	$7.7 \mathrm{E}+06$	$2.0 \mathrm{E}+05$
Bjet Veto	$3.1 \mathrm{E}+03$	$3.1 \mathrm{E}+03$	$3.7 \mathrm{E}+06$	$6.0 \mathrm{E}+04$
Mjj > 500GeV	$2.2 \mathrm{E}+03$	$2.2 \mathrm{E}+03$	$9.4 \mathrm{E}+05$	$4.1 \mathrm{E}+04$
Central Jet Veto	920	920	$4.2 \mathrm{E}+05$	$3.9 \mathrm{E}+03$
2 mu 2 tau	19.7	13.4	$2.4 \mathrm{E}+03$	1.6
MET > 25 GeV	17.6	11.3	110	0.6
Mu-Tau_dR<0.5 pairs	17.0	10.6	96.0	0.5
Opposite sign or Qtau=0	15.5	7.1	21.0	0.2
0 < x_vis1, x _vis2 < 1	12.8	6.7	11.6	0.08
\|cos(dphi) $\mid<0.95$	11.5	6.1	9.0	0.06
80 GeV < Higgs mass < 120 GeV	11.0	5.7	1.1	0.02

Discovery Potential

Significan ce $=\frac{\text { Signal }}{\sqrt{\text { Background }}}$

- Signal=11

Background=1.12

Discovery @ATLAS
Signal > 10
Significance >5

Hence, Significan ce $=\frac{11}{\sqrt{1.12}}=10.4$

- But the problem is, is this method reliable?
(from VBF, the actual number is 11 , but from F.M., it is about 2 times fewer \rightarrow BG might be underestimated by a factor of 2)
\rightarrow Take into account of this error gives us Sig. > 7.3 Discovery!
- Factorization method is not working well. Solutions are:
> Increase the statistics
> Detailed study of Factorization Method

Reconstruction of Higgs masses - Collinear Method -

Assume that decay products of Tau and Tau are travelling in the same direction.
This is true when the Tau is highly boosted

$$
\begin{aligned}
\mathrm{MET} & =\mathbf{P}_{v 1}+\mathbf{P}_{v 2} \\
& =\left(1-x_{1}\right) \mathbf{P}_{\tau 1}+\left(1-x_{2}\right) \mathbf{P}_{\tau 2} \\
& =\left(1-x_{1}\right) / x_{1} \mathbf{P}_{11}+\left(1-x_{2}\right) / x_{2} \mathbf{P}_{12}
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{m}_{\tau \tau}^{2}=\left(\mathbf{P}_{\tau \mathbf{1}}+\mathbf{P}_{\tau \mathbf{2}}\right)^{2} \\
& =\left(\mathbf{P}_{11} / \mathrm{X}_{1}+\mathbf{P}_{12} / \mathrm{X}_{2}\right)^{2} \\
& \sim 2 \mathbf{P}_{11} \mathbf{P}_{12} /\left(x_{1} x_{2}\right) \\
& \left(\mathrm{I}_{1}, \mathrm{I}_{2} \rightarrow \text { massless }\right) \\
& \mathrm{m}_{1112}{ }^{2}=\left(\mathbf{P}_{\mathbf{1}}+\mathbf{P}_{\mathbf{I 2}}\right)^{2} \\
& \sim 2 \mathbf{P}_{11} \mathbf{P}_{12} \\
& \left(\mathrm{I}_{1}, \mathrm{I}_{2} \rightarrow\right. \text { massless) } \\
& \mathrm{m}_{\tau \tau} \sim \mathrm{m}_{1112} / \sqrt{ } \mathrm{x}_{1} \mathrm{x}_{2} \\
& \left(\mathrm{I}_{1}, \mathrm{I}_{2} \rightarrow \text { massless }\right)
\end{aligned}
$$

Since MET, Pv1 and Pv2 can be measured, we can calculate x_{1} and x_{2} in order to reconstruct the mass of Higgs particle.
This can be applied to the $\mathrm{h} \rightarrow \mathrm{aa} \rightarrow 4 \tau$ as well.

Reconstruction of Higgs masses
 - Collinear Method -

$$
\left.\begin{array}{rl}
P_{v i s 1} & =P_{l 1}+P_{h 1}=x_{v i s 1} P_{a_{1}} \\
P_{v i s 2} & =P_{l 2}+P_{h 2}=x_{v i s 2} P_{a_{2}} \\
M E T & =M E T_{1}+M E T_{2} \\
& =\left(1-x_{v i s 1}\right) P_{a_{1}}+\left(1-x_{v i s 2}\right) P_{a_{2}} \\
& =\left(\frac{1-x_{v i s 1}}{x_{v i s 1}}\right)^{\text {vis } 1}
\end{array} P_{\text {vis2 }}\right)\left(\frac{1-x_{v i s 2}}{x_{v i s 2}} P_{v}\right.
$$

Sum of I1 and h1
Sum of I2 and h2

Results

Reconstructed Higgs mass mh
Collinear Method works well here as the a1-a2 are far away.

$$
\begin{aligned}
& \text { Truth }=100 \mathrm{GeV} \\
& \text { Mean }=104.6 \mathrm{GeV} \\
& \text { Sigma }=8.42 \mathrm{GeV}
\end{aligned}
$$

Distribution of $M(\mu, \tau)$
By looking at the cutoff, we can briefly estimate the mass of higgs a.

$$
\begin{aligned}
& \text { Truth }=5 \mathrm{GeV} \\
& \text { Cutoff } \sim 6 \mathrm{GeV} \text { ? }
\end{aligned}
$$

Conclusion

- NMSSM is as important as MSSM and it should be studied in detail.
- By using ATLAS detector, it is possible to discover Higgs $(100 \mathrm{GeV}$) in NMSSM.
- The resolution is about 10% and we can estimate the mass of CP-odd Higgs.

Future Plan

- Optimization of Statistics \rightarrow earlier discovery?
- Higgs mass scanning through the parameter space
\rightarrow Establish mass-independent analysis algorithm and discovery potential plot
- Study of Trigger for low Pt Muon and Taujet
\rightarrow Key of discovery
- Study of Forward Jet
\rightarrow Event Topology Identification
- And more......

Thanks for Listening

HIGGS BOSON
and don't stop searching for me!

Back up

Variables used for TaulD study

Reconstructed mass of bbar

Reconstructed Higgs mass mh

Reconstructed mass from bbar

As we can see from the left plot, bbar BG can be reduced by applying high mh cut.

Analysis (Object Selection)

Electron:	$\varepsilon^{\wedge} 80 \%$ pt $>8 \mathrm{GeV}$ fake.01- 0.1%
leta $\mid<2.7$	
author $=1$ or 3	
ElectronMediumNolso	

Muon:	$\varepsilon^{\sim 90 \%}$ ft> $>\mathrm{GGeV}$ fake 0.01%
\mid eta $\mid<2.7$	
StacolsCombinedMuon	
StacoBestMatch	
StacoMatchChi2<100	
StacoFitChi2<500	

Taujet:	
pt $>10 \mathrm{GeV}$	$\varepsilon^{\sim} \sim 40 \%$
leta $\mid<2.7$	
fake $\sim 1 \%$	
ntrk=1, 2,3	or 4
Q=-1, 0,1	
TauLikelihood >-5	

MissingET:

Inner Tracker ($|\eta|<2.5$)

SemiconductorTracker (SCT)

$>$ Silicon strip detector
> Barrel : 4 cylindrical layers
$>$ End-cap : 9 disks per side

Pixel Detector

$>$ Hybrid silicon pixel detector
$>$ Barrel : innermost cylindrical layer and 2 outer cylindrical layers
> End-cap : 3 disks per side

Transition Radiation Tracker (TRT)
$>$ Straw-tube tracking chamber w/ transition radiation capability.
$>$ Straws run in axial direction in barrel and radial direction in end-caps.

EM Calorimeter

$>\mathrm{Pb} /$ Lar sampling calorimeter with accordion-shaped electrodes
$>$ Three longitudinal segmentation
$>$ Cell size in $\Delta \eta \times \Delta \varphi$
1st (strip) : $0.003 \times 0.1,2$ nd (middel) : 0.025×0.025, 3rd (back) : 0.05×0.025
$>$ Pre-sampling in front of calorimeter in $|\eta|<1.8: \Delta \eta \times \Delta \phi \sim 0.025 \times 0.1$

Hadronic Calorimeter

Barrel Fe + Tile fiber, $11 \lambda,|\eta|<1.7$, 0.1×0.1 (DAQ=0.3) Tower (3 Layers)

Endcap Cu+LAr, $14 \lambda,|\eta|=1.5-3.2$,
0.1×0.1 for $|\eta|=1.5-2.5$,
0.2×0.2 for $|\eta|=2.5-3.2,4$ Layers

Forward Cu+W+W 3 Layers LAr 0.5mm gap 10入 $|\eta|=3.1-4.90 .2 \times 0.2$

Performance of ATLAS Detectors

ATLAS

Magnetic field

2 T solenoid + toroid (0.5 T barrel; 1 T end-cap)

Tracker
Si pixels and strips + TRT

$$
\sigma / \mathrm{p}_{\mathrm{T}} \approx 5 \times 10^{-4} \mathrm{p}_{\mathrm{T}}+0.01
$$

EM calorimeter

$$
\begin{gathered}
\mathrm{LAr}+\mathrm{Pb} \\
\sigma / \mathrm{E} \approx 10 \% / \sqrt{ } \mathrm{E} \oplus 0.007
\end{gathered}
$$

Hadronic calorimeter
Scint. + Fe / LAr + Cu (10 λ) $\sigma / E \approx 50 \% / \sqrt{ } \mathrm{E} \oplus 0.03 \mathrm{GeV}$ $\sigma / \mathrm{p}_{\mathrm{T}} \approx 2 \%$ @ $50 \mathrm{GeV}-$ 10\% @ 1 TeV (ID + MS)

- G. Aad et al (ATLAS Collaboration). J. Instrum. 3. s08003 (2008)
- S.Chatrchysn (CMS Collaboration), J. Instrum. 3. s08004 (2008)

Electron/ Y Reconstruction

> Leakage into Hadronic calorimeter
> Calorimeter shower shapes in $2^{\text {nd }}$ sampling
> Shower shape in η and ϕ
> Energy-weighted lateral width
> Calorimeter shower shapes in $1^{\text {st }}$ sampling
> Details of energy deposition structure in cells
> Shower width
> Track quality
> Number of hits in pixel, SCT, TRT
> Transverse impact parameter
> Track-cluster matching
$>\Delta \eta \times \Delta \phi$ position matching at calorimeter, E / p

> Red : Calorimeter-related Blue : ID-related Green : track-cluster

Muon Reconstruction

Keywords: Hits, Track, Eloss, Inner, Tag

Standalone, Combined, Tagged Muon

Inner Tracker Calorimeter
Efficiency ${ }^{\sim} 90 \%$ (Pt>10GeV), fake rate~0.01\%, Pt resolution~2\%-4\%

Hadronic Tau Reconstruction

- Main decay modes of Tau Lepton

$$
\begin{array}{lrl}
\tau^{-} \rightarrow l^{-} v_{\tau} \bar{v}_{l} & \sim 35 \% \\
\tau^{-} \rightarrow v_{\tau} \pi^{-}+N \pi^{0} & { }^{\sim} 45 \% & 1 \text { prong } \\
\tau^{-} \rightarrow v_{\tau} \pi^{-} \pi^{+} \pi^{-}+N \pi^{0} & \sim 10 \% & 3 \text { prong }
\end{array}
$$

- Characteristic of TauJet

1. One or Three Charged Tracks

3 prong decay
2. Pions are boosted \rightarrow narrow signal cone

- Hadronic taus are Identified using the facts above. There are 2 ways:
A) Track-base
B) Calo-base

Eff~40\%, Fake~1\%
for my analysis

LEP limits on Higgs

@95\% Confidence level

