原子炉ニュートリノ振動実験 Double Choozの現状報告

首都大学東京 理工学研究科 修士2年 香山 翔

1

ニュートリノが飛行中、その飛行距離に依存する確率で別の型に変化する現象。 ニュートリノ振動は牧・中川・坂田のMNS行列を使って記述出来る。

リノ振動

→原子炉から発生する $\overline{\nu_{e}}$ の変化量を精密測定する事により 残されたパラメータ θ_{13} の計測を目指す

Double Chooz Collaboration

France Saclay APC (collège de France) Subatech Nantes IPHC Strasbourg Max planck Heidelberg Munich TU Hamburg U Tubingen U Aachen U	USA Ja Livermore nat lab Argonne Columbia Univ Chicago Univ Kansas U Notre Dame U Tennesse U Alabama U Drexel U	apan 東北大学 東京工業大学 東京工業大学 新潟大学 首都大学東京 神戸大学 東北学院大学 広島工科大学
Spain CIEMAT Madrid	Illinois Inst tech MIT	
England Sussex UImage: Sussex URussia Kurchatov inst Sc. Acad.Image: Sussex UBrazil CBPF UNICAMPImage: Sussex U		

~150 people 35 institutes, 8 countries

・フランスArdennes地方 Chooz村の二基の原子炉($\overline{\nu_e}$ 源)を持った原子力発電所で行われる。

・原子炉から400mの地点にNear Detector(前置検出器)、1kmの地点にFar Detectorを設置。
 →同じSystematic Errorを持った2つの検出器の結果を比較する事により、誤差を軽減する。
 ※2010年4月からFar Detectorのみで実験開始予定

Outer Veto: 格子状に組まれた プラスチックシンチレータ(400 mm)

Buffer: ミネラルオイルで満たされた領域 このTankの内側に390本のPMTが設置される

PMT

- ・浜松ホトニクス製Low Background型 10インチPMT(R7081)
- QE×CE : ~25%
- γ-Catcher:Gd無し液体シンチレータ(22.6m³)

ν-Target:Gd入り液体シンチレータ(10.3m³)

液体シンチレータ

構成: 20% PXE – 80% Dodecane

性能

- ~8000 photon/MeV Energy Deposit
- Attenuation length :5~10m @420nm
- \cdot Radiopurity $\,:$ U: 10^{-12} g/g , Th: 10^{-12} g/g , K: 10^{-9} g/g

$\overset{\ }{\to} \beta$ 崩壊反応がTarget内(Gd入り液シン)で起きた場合 rompt signal $E_{prompt} = E-1.8MeV(threshold) + 2m_e(1.0MeV)$ ・陽電子はすぐに液体シンチレータ中の電子と する。陽電子は電子と ignal)。 次に、 Prompt の対消滅反応を起こし、ま $\frac{1}{2} \otimes 0$ 対消滅反応を起こし、ま 子はニュートリノターケーない。 電子の複数本のなる 電子を発生 これを検出する (Delayed Signal)。これら2つのシ 日金つの信号をそれぞれのEnergyの大きさ、時間差を要求して、ベント 日差を用けて、アントを選別する事で、Backgroundと区別する。 →Delayed Coincidence(同時遅延計測)

Far Detector建設作業

2009年夏頃から、Far検出器の建設作業が始まる。 日本グループを含む、各国のCollaboratorによって建設が行われた

建設前の実験サイト内

2009 7月 PMT 設置完了

Ì

il.

Acrylic Tank 設置作業

2009 9月

→2010年4月からデータ取得開始予定

・約2年後から,Nearも同時稼動する予定

実験の初期段階(~1年)における、新しいデータ解析方法の提案

Double Chooz実験では、様々なBackgroundと区別する為に Delayed信号の内、Gdに捕獲されて発生するEnergyが大きい信号だけを 解析に使用すると考えられている。

→水素原子に捕獲されるイベントも解析に使用すれば、
統計数を多く出来るので解析の感度を上げられないか?

実験が始まる前に、シミュレーションで同じ形式のデータを作成し そのデータを用いて、設定したsin²2θ13を再構成する解析を行う。

実際の実験でも観測可能なデータのみを用いる →PMTで観測される電荷量、時間情報 etc..

Double Chooz実験検出器シミュレーション

信号を出した粒子のEnergy Depositに変換

Neutrino Eventのシミュレーション

- $\cdot \Delta m^{2}_{32} = 2.4 \times 10^{-3} \text{ [eV^{2}]}$
- $\cdot \Delta m^{2}_{21} = 7.7 \times 10^{-5} [eV^{2}]$
- $\cdot \sin^2 2\theta_{12} = 0.52$

 $\% \sin^2 2\theta_{13} = 0$

- ・Farのみ & 原子炉は常に2つ稼働
- ・Target, γ-Catcherまで考慮する

Reactor設定		
原子炉の出力	4.25 [GW]	
235U	52%	
²³⁹ Pu	34%	
238U	8%	
²⁴¹ Pu	6%	

データ取得期間:1年間(360日)→実験の初期段階を再現

Delayed信号は~数百[µs]で観測される 水素原子捕獲:平均180µsec Gd捕獲:平均30µsec

Delayed信号の大きさによってイベントを選別をする

- 1、Delayed信号のEnergy Deposit >5 [MeV] 2、T_{delayed} - T_{prompt} > 1 µ sec
 - →Gd捕獲イベントが選別される

 \rightarrow これらを設定したsin²2 θ_{13} の値が解らない、観測データとみなす

観測データと比較する模擬データの作成 $P(\bar{v}_e \to \bar{v}_e) = 1 - \underline{\cos^4 \theta_{13}} \sin^2(2\theta_{12}) \sin^2(\frac{1.27\Delta m_{21}^2 L}{E}) - \underline{\sin^2(2\theta_{13})} \left\{ \cos^2 \theta_{12} \sin^2(\frac{1.27\Delta m_{31}^2 L}{E}) + (1 - \cos^2 \theta_{12}) \sin^2(\frac{1.27\Delta m_{32}^2 L}{E}) \right\}$

L :1.05[km] Δm^2_{21} :7.66×10⁻⁵[eV²], Δm^2_{32} :2.4×10⁻³ [eV²], Δm^2_{31} : $\Delta m^2_{21} + \Delta m^2_{32}$

振動が無い場合の $\overline{\nu_e}$ Energy分布

 \rightarrow Energy bin毎に掛け合わせる事で、任意のsin²2 θ_{13} における $\overline{\nu_e}$ のEnergy分布となる。

観測データと模擬データの比較

模擬データの統計数は観測データの大きさに合わせ、形のみで比較する → √eの検出数による誤差を考慮しなくても良い

観測データと最も形が合う時のsin²2θ₁₃を見つける →**スペクトル解析**

最小二乗法によるFitting

データは100%ニュートリノイベントで、Background等が含まれていない →2.5%のSystematic Errorを付加する。

$$\chi^{2} = \sum \frac{(\text{data}_{i} - \text{theory}_{i})^{2}}{(\sigma_{\text{stat}})^{2} + (\text{data}_{i} \times \sigma_{\text{syst}})^{2}}$$

data_i: Gd only と proton+Gdの2種類の観測データ theory_i: あるsin²2θ₁₃の時の模擬データ σ_{stat}:data_iの統計Error σ_{syst}:Systematic Error(2.5%)

→様々なsin²2 θ_{13} を持った模擬データと観測データを比較し(χ^2 を求め) χ^2 が最小になる物を見つける

 $sin^2 2 \theta_{13} < 0.050(stat only)$, $sin^2 2 \theta_{13} < 0.083(stat+syst)$

Gd + proton

 $sin^2 2\theta_{13} < 0.032(stat only)$, $sin^2 2\theta_{13} < 0.079(stat+syst)$

Δm^2_{32} と sin²2 θ_{13} を同時にFitting

水素捕獲イベントまで含めた方が、予想される Δm²32の領域でsin²2θ₁₃の感度が良くなると期待される。

1年分のデータを使用した時のDiscovery Potential ※有限値を決定する事が出来るsin²2 θ 13の下限値 →sin²2 θ 13がこの値以上にあれば、有限値を決める事が出来る。

→Gd + protonの方が、よりsin²2θ₁₃が小さい場合まで有限値を求める事が可能

まとめ

・Double Chooz実験はフランスで行われる原子炉ニュートリノ振動実験で 2010年4月にスタートする予定。

・シミュレーションで作成したデータを用いてsin²2θ13を求める解析を行った。

・実験初期段階(約1年)分のデータで解析を行う場合、水素に捕獲される イベントも使用してスペクトル解析をした方が感度を上げられる

95% C.Lの場合

• sin²(2 θ 13) Upper Limit 0.083(Gd only) \rightarrow 0.079(Gd + proton)

Systematic Errorの正確な見積り

今回は2.5%と決めてしまったが、Backgroundのシミュレーション等 をそれぞれ行ってSystematic Errorの値を見積もる。