

フェルミ研ブースター ニュートリノビームを用いた 短基線ニュートリノ振動の探索 中島 康博 (京都大学) 2010年2月16 ICEPPシンポジウム

Contents

- Introduction
 - ・ニュートリノ振動
 - 何を探そうとしているか
- Experimental Setup
 - ブースターニュートリノビーム
 - SciBooNE と MiniBooNE 検出器
- ニュートリノ振動解析

Introduction

Neutrino Oscillation

•ニュートリノ振動:

ニュートリノのフレーバー固有状態と質量固有状態が混合してい

るため、時間(飛行距離)とともにフレーバーが変化する現象。 $|v_{\alpha}(t=0)\rangle = \sum_{i} U_{\alpha i} |v_{i}\rangle$. $\alpha = e, \mu, \tau (\nabla \nu - N - \Box a + \pi t)$ i = 1, 2, 3(質量固有状態) $U = \begin{pmatrix} 1 \\ c_{23} & s_{23} \\ -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & s_{13}e^{-i\delta} \\ 1 \\ -s_{13}e^{i\delta} & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} \\ -s_{12} & c_{12} \\ 1 \end{pmatrix} MNS行列$ $s_{ij} = \sin \theta_{ij}, c_{ij} = \cos \theta_{ij}$ π^{+}

$$P_{\alpha \to \beta} = \left| \left\langle v_{\beta}(t) | v_{\alpha}(0) \right\rangle \right|^{2}$$
振動確率
= $\sin^{2} 2\theta \sin^{2} \left(\frac{1.27 \Delta m^{2} [eV^{2}] L[km]}{E[GeV]} \right)$
 θ :混合の大きさ
 $\Delta m^{2}: = 1 - h J J 質量二乗差$
L: 飛行距離
E: = 1 - h J J 工ネルギー

Neutrino Oscillations

MiniBooNE ve results

v_µ→ **v**_e 探索

島康博 ICEPPシンポジウム 2010

SciBooNE/

MiniBooNE ve results

0.4 Ne 0.4 Distribution of $\overline{\nu}_{a}$ events No Evidence of Oscillations (although limited by statistics) Data (Stat. Error) Events / 0.3 0.2 \mathbf{v}_{P} from $\mu^{+/-}$ v_ρ from K^{+/-} \mathbf{v}_{o} from K⁰ π^0 misid 0.2 $\Delta \rightarrow N\gamma$ 0.15 dirt other 0.1 — Syst. Error 0.05 8.2 0.4 0.8 0.6 1.2 1.5 3.0 E >200 MeV Limit 10² **Result is inconclusive** with respect to LSND oscillations 10 LSND 99% CL |∆m²| (eV²/c⁴) LSND 90% CL 10⁻¹ 90% CL limit, E^{QE} > 200 MeV 90% CL sensitivity, $E^{QE} > 200 \text{ MeV}$ KARMEN2 90% CL 10⁻² 10⁻³ 10⁻² 10⁻¹ 1 sin²(20)

ν_μ→ν_e探索

島康博 ICEPPシンポジウム 2010

SciBooNE

MiniBooNE ve results

0.4 Ne 0.4 Distribution of $\overline{\nu}_{a}$ events No Evidence of Oscillations (although limited by statistics) Data (Stat. Error) Events / 0.3 0.2 ∇_{α} from $\mu^{+/-}$ $\nu_{\rm p}$ from K^{+/-} \mathbf{v}_{o} from K⁰ π⁰ misid 0.2 $\Delta \rightarrow N\gamma$ 0.15 dirt other 0.1 — Syst. Error 0.05 8 0.4 0.8 0.6 1.2 1.5 3.0 E >200 MeV Limit 10^{2} **Result is inconclusive** with respect to LSND oscillations LSND領域をテストするには もう少し統計が必要 ΔΩ 10⁻¹ 90% CL limit, E^{QE} > 200 MeV 90% CL sensitivity, E^{QE} > 200 MeV KARMEN2 90% CL 10⁻² 10⁻² 10⁻³ 10⁻¹ 1

sin²(20)

v_µ→v_e探索

島康博 ICEPPシンポジウム 2010

SciBooNE

Possible Scenarios

ICEPPシンポジウム

- (ニュートリノ振動の枠組みの中では)
 "Sterile"ニュートリノとの振動 + CP-violation
 - CPの破れは混合行列の複 素位相
 - (Effective) CPT-violation
 Δm² がvとanti-vで違う
 ν_µ/anti-v_µ 消失を測定することに
 よってもこれらのモデルを検証可能

中島康博

2010

SciBooN

Search for Muon Neutrino $\frac{\text{SciBooNE}}{\text{Disappearance at high } \Delta m^2}$

- MiniBooNEのデータのみを用いた 解析
 - スペクトラムの「形」のみを用
 いた解析
- フラックスと断面積の不定性大
 前置検出器(SciBooNE)を用いれば より高い感度での探索が可能!

SciBooNE Detector Installation April, 2007

Experimental Setup

Fermilab

Fermilab Booster Neutrino Beamline

100 m

 High intensity Neutrino and Anti-Neutrino beam

- $E_v \sim 1 \text{ GeV}$
- Neutrino Fluxes are measured at 2 detectors: SciBooNE and MiniBooNE

• L ~ 500m <u>Sensitive to Oscillations at $\Delta m^2 \sim 1eV^2$ </u> $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [eV^2]L[km]}{E[GeV]} \right)$

SciBooNE

SciBooNE Detector

• SciBar:

- Full active scintillator tracker (~14000 strips)
- Neutrino Target
 - Fiducial volume: ~10 tons
 - Main component: CH
- Electron Catcher (EC)
 - "Spaghetti" type calorimeter
- Muon Range Detector (MRD)
 - Steel and scintillator sandwich
 - Measure muon momentum from its range

SciBooNE Data Taking

- Started beam data taking on July 2007
- Data taking completed in August 2008
- Stable data taking
- Tatal 2.52x10²⁰ POT for analysis (95% of delivered)
 - Neutrino: 0.99x10²⁰ POT
 - Anti-Neutrino: 1.53x10²⁰ POT

SciBooNE Cross-Section Results

- SciBooNE実験の(もう一つの) 主目的 は、将来のニュートリノ振動実験のため の、反応断面積精密測定。
 荷電カレントコヒーレントπ生成反応
 - この反応が理論予想に比べて有意に少ないことを発見
- Phys. Rev. D78, 112004 (2008)
 中性カレントπ^o生成反応
 - Phys. Rev. D81, 033004 (2010)

MiniBooNE Detector

MiniBooNE Detector

Signal Region
Signal Region

- Mineral oil Cherenkov detector
 - Select v_{μ} by single muon and its decay-electron signal.
- Total mass: ~1k ton
- Main component: CH₂
- Taking beam data since 2002
 - 5.58 x 10²⁰ POT (neutrino mode)
 + SB-MB overlap
 - 2 detectors share the beam and
 - the target material (both carbon)
- Most of the systematic error cancels

SciBooNE

MiniBooNE Detector

Oscillation Analysis

Analysis Overview

<u>2 Independent Analyses</u>

Step-by-step

SciBooNE Data

Spectrum fit

SciBooNE True E_v

Far/Near ratio

 $MiniBooNE \ True \ E_{\nu}$

MiniBooNE Rec. Ev Prediction

Oscillation Fit

MiniBooNE Rec. E_v Data

<u>Advantage</u>: Can see what physically happening and error size at each step

Simultaneous fit

SB + MB Rec. E_v Data

Oscillation Fit

SB + MB Rec. E_v Prediction

<u>Advantage</u>: Can include all correlation and minimize the systematic error

今回は、私が行っている **"Step-by-step**"解析を話します

中島康博 ICEPPシンポジウム 2010

SciBooNE v_{μ} Selection

- Select events with muon track (Charged current inclusive sample)
- Muon selection
 - Muon-like energy deposit in SciBar
 - Require tracks stopped in the detectors
- Require momentum > 0.25 GeV (MC) True Ev distribution of each sample

SciBooNE

Event Selection (Timing)

- 2 µsec beam timing window.
 - Less than 0.5% cosmic background contamination.
- ~14K SciBar-stopped events.
 ~20K MRD-stopped events.

Reconstructed Interaction Vertices

SciBooNE

MRD matched muon (relatively normalized)

20

SciBooNE SciBooNE SciBooNE (1)

P_μ: Muon momentum reconstructed by its path-length $θ_{\mu}$: Muon angle w.r.t. beam axis

- Fit P_{μ} vs. θ_{μ} distributions.
- Determine MC scale factor for each true E_v bins.

MC Templates (MRD-stopped)

コ島康博 ICEPPシンポジウム 2010

SciBooNE SciBooNE SciBooNE (2)

P_{μ} and θ_{μ} distribution after

得られたE_v scale factorをMC

に適用

fitting (MRD-stopped)

MiniBooNE Reconstruction

 崩壊電子によりµを選択
 荷電カレント準弾性散乱(CCQE)を 仮定し、µの運動量、角度から
 ニュートリノエネルギーを再構成

$$E_{\nu} = \frac{m_p^2 - (m_n - V)^2 - m_{\mu}^2 + 2(m_n - V)E_{\mu}}{2(m_n - V - E_{\mu}) + p_{\mu}\cos\theta_{\mu}}$$

MiniBooNE Prediction

- Extrapolate measured spectrum from SciBooNE to MiniBooNE.
- Convert True $E_v \rightarrow \text{Rec. } E_v$
- Systematic Errors
 - SciBooNE spectrum measurement uncertainty
 - Beam flux model
 - Cross-section model
 - MiniBooNE detector response

MiniBooNE reconstructed E ν and its error expectation

An Example of Flux Systematic Error

フラックスの予想には、HARP実験で測定された、p-Beからのハドロン生成の断面積を使用。

Be

• その測定誤差を系統誤差とする

8 GeV

Proton

フラックスの絶対値のエラーは大きい

 (~10%)がSciBooNE/MiniBooNEで比をとると無視できる大きさになる(~1%)

SciBooN

An Example of Crosssection Errors

- MiniBooNEで荷電カレント準弾性散
 乱を測定
 - Axial form factor (F_A), Pauliblocking を調整
 - その誤差を系統誤差に
- 最も大きなエラーの一つ(~5%程度)
 - MiniBooNEとSciBooNEで角度ア クセプタンスが大きく違うため
 - SciBooNE: 前方に集中
 - MiniBooNE: 等方的

ニュートリノ振動Fit

- 2-flavor間での振動を仮定し、 Δm^2 , $\sin^2(2\theta)$ のパラメー ター領域をスキャン $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = \sin^2 2\theta \sin^2 \left(\frac{1.27\Delta m^2 [eV^2]L[km]}{E[GeV]} \right)$
- $\Delta \chi^2 = \chi^2$ (each point) χ^2 (best) を用いて各パラメーターでの振動の可能性を評価する。 $\chi^2 = \sum_{i,j}^{16 \ bins} (N_i^{data} - N_i^p) M_{ij}^{-1} (N_j^{data} - N_j^p)$.
 - ・ 信頼度と∆χ²の値の関係は、MCを用いて決定
 (Feldman-Cousins method)

2 2.2

 Oscillation maximum at MiniBooNE detector at ~2 eV²

 Oscillation maximum at MiniBooNE detector at ~2 eV²

- Oscillation maximum at MiniBooNE detector at ~2 eV²
- Oscillation maximum at SciBooNE detector at ~20 eV²

- Oscillation maximum at MiniBooNE detector at ~2 eV²
- Oscillation maximum at SciBooNE detector at ~20 eV²

SB Enu

- Oscillation maximum at MiniBooNE detector at ~2 eV²
- Oscillation maximum at SciBooNE detector at ~20 eV²
- Oscillation effect completely washed out above ~100 eV²

Oscillation Sensitivity

MiniBooNE単独での測定
 に比べ、特にlow-Δm2領域
 で感度を向上

SciBooNE

 近日中にdataのfit結果を発 表できるはずです。

中島康博 ICEPPシンポジウム 2010

- SciBooNEとMiniBooNE両方のデータを用いた、Δm² ~ 1eV²領
 域のニュートリノ振動の探索を行っている
- これまでに、解析手法を確立、感度の見積もりを行った
 - MiniBooNE単独に比べ感度を向上
- ・近日中に結果を発表
- 反ニュートリノデータの解析も進行中

SciBooNE