Fundamental Particle Physics Lab.

Division of Particle and Astrophysical Sciences School of Science of Nagoya University

高分解能原子核乾板を用いた暗黒物質探索

中 竜大 名古屋大学基本粒子研究室(F研)

ICEPPシンポジウム@白馬 2010.2.14-17

Direct Dark Matter Search

Target : Xe, Ge, Si, Nal, Ar etc

How to detect the WIMP

Detect the nuclear recoil by WIMP

原子核乾板によるDMの方向検出

<u>原子核乾板</u>

- •固体飛跡検出器(密度~3g/cc) →target mass
- ・高い位置分解能 → tracking
- ⇒世界中で、target massを稼げて、DMの方向検 出が可能な検出器のアイディアはこれだけ。

130		すごくおもしろい。 もっと若ければこの研究をや	5りたかった。。。)
	4			

Vitaly Ginsburg (2003 Nobel Prize)

Directional Dark Matter Detector

SOLIO

DRIFT (CS₂, CS₂-CF₄) NEWAGE(CF₄) DM-TPC(CF₄) MIMAC(³He/CF₄)

gas

特にSpin dependentな反応に 有利なtarget

Spin independentな反応に有利 (SDにも感度あり)

SE GUE MAR Alling

uclear emulsion (AgBr

Collaboration	Technology	Target	Interactions	Head-tail	Readout	V (m ³)
DRIFT DMTPC NEWAGE MIMAC <u>Emulsions</u>	NITPC TPC TPC TPC emulsions	CS_2, CS_2 - CF_4 CF_4 $^3He/CF_4$ AgBr	SI/SD SI/SD SI/SD SI/SD SI/SD	yes yes no yes no	MWPC 2D + timing Optical (CCD) 2D μ PIC 2D + timing Micromegas 2D + timing Microscope 3D	1 0.01 0.03 0.00013 N/A

Principle of the Track detection in Nuclear Emulsion

ゼラチン

Resolution depend on AgBr size and density.

Required resolution of Nuclear Emulsion

High resolution emulsion (Nano Imaging Tracker:NIT)

normal emulsion(OPERA emulsion)

size $200 \pm 16 \text{ nm}$ density $2.8 \text{g/cc} \rightarrow V_{\text{AgBr}} : V_{\text{gel}} = 3 : 7$ \downarrow **2.3 grains/µm**

size $40 \pm 9 \text{ nm}$ density $2.8 \text{g/cc} \rightarrow V_{\text{AgBr}} : V_{\text{gel}} = 3 : 7$ \downarrow **11 grains/µm**

5times high resolution

Check of the sensitivity of nuclear emulsion to the low velocity Kr ion.

SEM image

Track data

NIT can detect tracks recoiled by WIMPs!

M.Natsume et al. NIM A 575(2007) 439

1µm以下の飛跡をいかに読みだすか
 →このR&Dがもっともchallenging
 (これをclearすればすぐに実験開始が可能)

Background rejection

より高分解能なNIT→lower energy threshold

OPERA実験まで蓄積された原子核乾板技術の延長とは違った アプローチが必要!!

Strategy of readout of submicron NR track

⇒これさえできれば、massを増やすのは簡単!!

- 1. Expanding emulsion
- ⇒emulsionを膨らますことで、飛跡を引き伸ばす 100nm (need electron microscope)
- <u>長所</u> Track認識が非常に 簡単 <u>短所</u> Scanning volumeの 増大

1µm (can use optical microscope)

2. 銀粒子からの散乱光における非線形応答

散乱光から飛跡候補をpick up ↓ 高分解能な顕微鏡でcheck

Swell the low velocity ion tracks recorded in the NIT

ph treatment + glycerin treatment \Rightarrow Larger swelling (possible to 10 timesl)

T.Naka et al. Nucl. Inst. Meth. A 581(2007) 761

600keV Kr 3D image of optical microscope

Automatic scanning R&D by UTS

中性子によるrecoil trackでscanning test

Automatic scanning R&D result

Tracking efficiency

ph>9 cut	86+-11%
ph>10 cut	81+-13%

散乱光のtrack情報

Gold nano particle

C.Sonnichsen et. al Phys.Rev.Lett. Vol.88 Num.7

金属ナノ粒子のプラズモン共鳴

$$p = \frac{\varepsilon(\omega)-1}{\varepsilon(\omega)+2} a^{3}E$$

誘電関数 $\epsilon(\omega)$ =-2のときの周波数で共鳴ピークを持つ。 ここで、 $\epsilon(\omega)$ =1- ω_p^2/ω^2 [ドルーデモデル近似]

共鳴周波数は、サイズや形状、金属種に依存。 (emulsionでは銀ナノ粒子)

<u>並んだ銀ナノ粒子光学応答</u> → 偏光方向による散乱強度の違い

<u>双極子モーメント</u> a) P=(1- α/r^3)p₀ b) p=(1+2 α/r^3)p₀ $\alpha = \frac{\epsilon(\omega)-1}{\epsilon(\omega)+2}$ a³

b)の方が2p₀より大きな双極子が誘起される。a)では、 2p₀より小さくなる。

原子核乾板中での利用

協力:北大 三澤研究室

Spectrum

Wavelength shift event

No wavelength shift event

X線顕微鏡@SPring8

100µm厚の乾板も観察 可能 ・非破壊観察ができる 高分解能(δx~100nm)

400nm

Background rejection concept

For yray, electron

⇒Sensitivity control

- nuclear emulsion itself
- development control

shield For αray

range discrimination

- development control
- fiduecial cut

alpha from Th,U chain and Rn is not background

For neutron

- shield
- development control
- directional

Sensitivity of emulsion is corresponded to generated rate of latent image. \Rightarrow depending on dE/dx of incoming particle.

乳剤製造システム

が。。。

1kg • year best limit for NIT

最初の目標: DAMA領域をdirectionalで検証

WIMP sensitivity for NIT

WIMPs event rate 1 counts/(1000kg year) limit

Summary

- 高分解能原子核乾板NITを開発
- 世界で唯一のdark matterの方向検出可能なsolid detector
- 開発要素

-1µm以下の飛跡読み出し

-background rejection (現状でelectronに対して10-5)

- 乳剤製造facilityの建設によって定常的な生産と開発が可能となる
- まずはDAMA領域の探索が目標
- 将来的に数トンのdark matterの方向検出を目指す