

Vacuum vesse

KEK PS E391a実験における KL→π⁰v⊽探索の最終結果

16th ICEPP Symposium (2010 Feb 15) Hideki MORII (Kyoto Univ.)

Movable trame

Contents

Gsi - calerimeter

Contents

Introduction

- $K_L \rightarrow \pi^0 \nu \overline{\nu}$ を測定する意義
- E391a実験の測定原理
- Data analysis
 - "halo neutron background"
 - イベント選択の最適化
- Results
 - sensitivity & results

Gsi - catorimeter

Main harrel

Vacuum vessel

Introduction

Introduction

Physics motivation

Introduction

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ Decay in SM

- K_L→π⁰νν崩壊の特徴
 "直接的" CP violation
 - ・ CKM行列の複素位相 η を観測 Br(KL $\rightarrow \pi^0 \nu \overline{\nu}$) $\propto \eta^2$
 - ・ 理論的不定性が小さい:1-2% $(K^+ \rightarrow \pi^0 e^+ \nu + isospin対称性)$
 - rare decay
 - : 分岐比 2.5x10-11 @SM

16th ICEPP Symposium

2010/Feb/15

Introduction

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ Decay with NP

もし新物理があれば…?
 新粒子がloop diagramを回る
 →崩壊振幅を変化させる
 & 理論的不定性: still 1-2%

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ Decay with NP

6

Introduction

History of $K_L \rightarrow \pi^0 \nu \ \overline{\nu}$ Search

- 上限値更新の歴史
- KTeV
 - $\pi^{0} \rightarrow e^{+}e^{-}\gamma$
 - Br < 5.9×10^{-7}
- KEK E391a (Run2)
 - $\pi^{0} \rightarrow \gamma \gamma$
 - Br < 6.7×10^{-8}

E391a Experiment

Main harrel

Vacuum vessel

E391a Experiment

E391a Experiment

E391a Experiment

- $K_L \rightarrow \pi^0 \nu \overline{\nu}$ 探索実験 @ KEK 12GeV PS
 - ・ 世界初のこのモードに特化した実験
 - 次期実験 K^oTO (J-PARC E14) のためのパイロット
- Three Physics Runs
 Run1 (2004 Feb-Jul) "membrane" problem
 - Run2 (2005 Feb-Apr)
 - Run3 (2005 Nov-Dec)

最終解析には Run2 + Run3 のsampleを使用

E391a Experiment Experimental Principles

シグナルモードの同定
 KL→ $\pi^0 \nu \overline{\nu}$ state
 +2 γ cannot detect
 "2 γ + nothing"

 P_{T}

2γ → Csl calorimeter (energy, position)
nothing → hermetic veto detector
崩壊点をM(π⁰)を仮定する事で再構成 M(π⁰)² = 2E₁E₂(1-cos θ)
"pencil" beam で pT 分解能を確保
pTと崩壊点の情報から signal regionを定義

16th ICEPP Symposium 2010/Feb/15

signal region

Signal Mode

KL

16th ICEPP Symposium 2010/Feb/15

....

Y

E391a Experiment

E391a Experiment

CsI calorimeter

Signal Mode

KL

pure Csl crystal 7x7x30cm (5x5x50cm)

Csl Calorimeter

16th ICEPP Symposium 2010/Feb/15

Y

E391a Experiment

File special for the function of the special

E391a Experiment

E391a Experiment

E391a Experiment

16th ICEPP Symposium 2010/Feb/15

Strategy to Run2+3 Data Analysis

Vacuum vessel

Strategy to Run2+3 Data Analysis

Strategy to Run2+3 Data Analysis Review of Run2 Analysis

- ーつ前の解析: Run2 Result
- blind analysis
- No event observed in the signal box
- Upper limit 6.7 x 10⁻⁸
 (90% C.L.)

(Phys. Rev. Lett. 100 201802, 2008)

- ・ Run2解析から得られた事
 - 最大のバックグラウンド源
 - \rightarrow halo neutron BG
 - Collar Counter (CC02)- π^0 BG
 - CV- π^0 BG
 - CV- η BG

Strategy to Run2+3 Data Analysis Halo Neutron Background

- Halo neutron
 neutron flux surrounding beam core
- Halo neutron BG halo-n hits detector around beam core \rightarrow creates $\pi^0, \eta \rightarrow 2\gamma$

Strategy to Run2+3 Data Analysis Mechanism of Neutron Background

Collar Counter (CC02) π^{0} BG Erを実際より低く見積もる (shower leakage & photo-nuclear effect) →θを大きく見積もる • $CV-\pi^0 BG$ Erを実際より大きく見積もる (due to fusion cluster) $\rightarrow \theta$ を小さく見積もる • CV-η BG M(π⁰)とM(η)の違い $\rightarrow \theta$ を小さく見積もる

16th ICEPP Symposium 2010/Feb/15

 $\frac{1}{9}$ $CV-\pi^{0}$ $CV-\pi^{0}$ $\frac{1}{100}$ $\frac{1}{100$

15

Strategy to Run2+3 Data Analysis Motivation for the Current Analysis

halo neutron BG

- CC02 π^{0} BG (ightarrow extrapolation of the Al-target data)
- CV π^0 BG (\rightarrow bifurcation)
- CV η BG (→ geant4 + geant3 MC)
 以前のRun2解析では別々の方法で見積もり
 バックグラウンドの統一的な扱いが困難
 → シグナル/バックグラウンドの効率的な最適化が難しい

新しい解析では halo neutron BGの見積もりを統一的な方法で行う → シンプルで効果的なS/Nの最適化 → バックグラウンドの統一的な理解

Study on halo-n BG

Main harrel

Vacuum vessel

Study on Halo Neutron BG

Study on halo-n BG

Halo Neutron BG Study

Halo neutron BG studyの手順
 1. FLUKAのhadronic interaction modelの信頼性を確認

 → 確認用に取られた測定データ(AI-plate run)を使用
 2. イベント選択の最適化
 3. バックグラウンドの見積もり

Al Target Run

Study on halo-n BG confirmation of fluka model

・ 確認すべき事
 ・ π⁰, ηの生成率
 → データとFLUKA simulation
 を比較する事で確認

Al target run

- 5mm厚のAl targetをビームライン中へ挿入
 → 2γの質量を再構成可能 (with fixed z-vertex)
- Amount of statisitics
 - 5.57 x 10¹⁶ POT

π^{0} , η Production Rate Study on halo-n BG

Cut Optimization

- Cut condition最適化の方針
 - S/NをRun2の結果と同等に保ちながら acceptanceを最大化する
 最適化の間は実データのシグナル領域を隠す → human-biasingを防ぐため
- . 具体的には?
 - 新しいカット"cluster-shape NN"の導入
 - いくつかのカットを置き換え
 - ・ パラメータの自動最適化

16th ICEPP Symposium 2010/Feb/15

Study on halo-n BG

cut optimization

Study on halo-n BG Cluster Shape NN Cut (for CV-η BG) ・ Cslのヒットパターンを用いたNeural Network CV-η BG は広がりを持ったクラスタを生成 (rが浅い角度でCslに当る&rのエネルギーが高い) ・ NNへの入力: energy, r, phi-position (each crystal)

γ -fusion NN Cut (for CV- π^0 BG)

 CV-π⁰ BG
 Cslでの"fusion" clusterが原因
 Run2からカットの変更で最適化
 cluster size cut → fusion NN cut ~40% accept. loss → ~20% accept. loss
 rejection power is similar (~70% reduction)

Result of Optimization Cut optimization

condition	Signal	S/N (arb.)			
Run2(prev.)	30328	5054			
New	45945(+51%)	5105			
S/N:以前のRun2解析と同等					
acceptance:以前のRun2解析から50%増加					
16th ICEPP Symposium 2010/Feb/15					

Background Estimation

Vacuum vessei

Background Estimation

Halo neutron background K_L background

Background Estimation Background Estimation

Halo neutron background

- CC02- π^{0} : from upstream
- CV- π^0 : from downstream
- $CV-\eta$
- K_L originated background
 - neutral mode : $K_L \rightarrow 2\pi^0$, $K_L \rightarrow \gamma \gamma$
 - charged mode : $K_L \rightarrow \pi^+ \pi^- \pi^0$

CC02- π^0 Background Estimation (upstream) halo-n BG

- CC02- π^0 BG (BG from upstream)
 - 0.66 ± 0.39 events

Background Estimation CV- π^0 Background (downstream)^{halo-n BG}

- CV- π^0 BG (BG from downstream)
 - no events remained \rightarrow < 0.36 events

CV-n Background

CV-η BG 0.19 ± 0.13 events

16th ICEPP Symposium 2010/Feb/15

Background Estimation

halo-n BG

Background Estimation KL Decay Backgrounds

- K_L decay backgrounds GEANT3 simulation
- $K_I \rightarrow 2\pi^0$ vetoで余分な2つのrを検出 統計量:Run2+3の約65倍 全カット適用後: 2events $: 0.024 \pm 0.018$

• 他のKL decay BG's: $K_{L} \rightarrow \gamma \gamma$: P_T, kinematic selction $\rightarrow O(10^{-5})$ Charged modes : reduced by $CV \rightarrow O(10^{-4})$

> 16th ICEPP Symposium 2010/Feb/15

K_L BG

Background Estimation Summary of Background Estimation

Summing up all background sources
 → estimated # of background : 0.87 ± 0.41

source		estimated BG
ΚL	$K_L \rightarrow 2\pi^0$	0.024 ± 0.018
	others	small (~O(10 ⁻⁴))
halo-n	CC02-π ⁰	0.66 ± 0.39
	CV-π ⁰	0.0 (<0.36)
	CV-η	0.19 ± 0.13
total		0.87 ± 0.41
Allovable frame 16th ICEPP Symposium		for Run2 + Run3 da
		2010/Feb/15

Background Estimation Summary of BG Estimation ・シミュレーションによる見積もりとデータを比較 \rightarrow データをよく再現している

Movable frame

Sensitivity & Results

Main harrel

Vacuum vessel

Sensitivity & Results

of K_L decays Sensitivity Results

of KL Decays

・E391a full dataで得られたKL 崩壊数 ・KL→3 π^0 , 2 π^0 , $\gamma\gamma$ の3 modesで見積もり Run2 + Run3 data

mode	# of events in data	acceptance	flux
$K_L \rightarrow 3\pi^0$	118334	(7.21±0.06) x 10 ⁻⁵	(8.41±0.03 _{stat.} ±0.53 _{syst.}) x 10 ⁹ (-3.3%)
$K_L \rightarrow 2\pi^0$	2573.9	(3.42 ± 0.03) x 10 ⁻⁴	(8.70±0.17 _{stat.} ±0.59 _{syst.}) x 10 ⁹ ()
K _L →γγ	35367	(7.18 ± 0.03) x 10 ⁻³	(9.02±0.05 _{stat.} ±0.51 _{syst.}) x 10 ⁹ (+3.7%)

cf.) Run2 only : flux = 5.13×10^9

→ Run2+Run3 = 統計量は以前の解析の I.7倍

16th ICEPP Symposium 2010/Feb/15

Sensitivity & Results

Sensitivity & Results

Signal Acceptance

Signal acceptance

accidental effect 17.4% loss (Run2) A= (イベント選択後に残るイベント数) (崩壊領域で崩壊したK∟数) 20.6% loss (Run3)

> ×(accidental loss) x (loss by time cuts)

 $= \frac{(1.06 \pm 0.08)\% \text{ for Run2}}{(1.01 \pm 0.06)\% \text{ for Run3}}$ (cf. previous analysis with Run2 : 0.670%)

(# accept MC)

 $\overline{}$ (# generated \rightarrow decayed in MC)

35

Sensitivity

• K_L flux

- (8.70 ± 0.61) x 10^9 K_L decays for Run2 + Run3
- Single event sensitivity (S.E.S.)

 "leventの観測が期待できる分岐比"
 S.E.S. = 1/ (Acceptance x # of KL)
 = (1.11 ± 0.10) x 10⁻⁸ for Run2 + Run3

16th ICEPP Symposium 2010/Feb/15

Sensitivity & Results

Sensitivity & Results Now, Ready to Open the BOX

Opening the box for Run2 + Run3 data

Sensitivity & Results Now, Ready to Open the BOX

Opening the box for Run2 + Run3 data

Sensitivity & Results Now, Ready to Open the BOX

Opening the box for Run2 + Run3 data

Results

 Acceptance = 1.06% (Run2) and 1.01% (Run3) (cf. Run2 previous : 0.670%)

Sensitivity & Results

- S.E.S. = 1/(Acc. x #KL) Run2 + Run3 : 1.11 x 10⁻⁸ (cf. Run2 previous : 2.91 x 10⁻⁸)
- 分岐比上限

no events observed \rightarrow x 2.3 with Poisson stat.

E391a final : BR(K_L $\rightarrow \pi^{0} \nu \overline{\nu}$) < 2.6 x 10⁻⁸ (@90% C.L.)

(cf. Run2 previous : 6.7 x 10⁻⁸ @ 90% C.L.)

→ Improvement from the previous : $\times 2.6$ (=1.7 x 1.5) 統計 acceptance

Milestone

歩前進!

10⁻²⊧ Littenberg E731 (ee) E799(e^{*}e) K TeV(2y) KTeV(ee) 10⁻⁶ E391a Run-1 1week(2) E391a Run-2(2) 10⁻⁸ 10^{-10} K⁰TO step1 ¹ 10^{.12} K⁰TO step2 10⁻¹⁴ 2000 2010 2020 1990 year

Next step : K^oTO
 E391aでの知見を
 活かして…
 →next talk

16th ICEPP Symposium 2010/Feb/15

Sensitivity & Results

Summary (1)

- $K_{I} \rightarrow \pi^{0} \nu \overline{\nu}$ 崩壊
 - 新物理を探索する良い実験場:CPV, theoretically clean
- E391a experiment @ KEK 12GeV PS
 - first dedicated experiment for $K_{L} \rightarrow \pi^{0} \nu \overline{\nu}$
- Features of Full Analysis
 - halo-n BG studyに重点 simpleな手法で見積もり 効果的にイベント選択を最適化 (+50% in acceptance)
 - データの統計量

Run2+Run3で以前の解析(Run2)の約1.7倍

Summar

Summary (2)

- Acceptance : 1.06% (Run2) & 1.01% (Run3)
- Sensitivity
 - S.E.S. : 1.11 x 10⁻⁸ (Run2 + Run3)
- Opening the box for Run2 + Run3 data
 - \rightarrow No events observed!
- Upper Limit (E391a final)
 BR(K_L→π⁰νν) < 2.6 x 10⁻⁸ (@ 90% C.L.) (以前の解析から2.6倍の更新)
- ・ E391a実験の手法の有効性を証明
 - →その知見を活かしてJ-PARC K^oTO実験へ

Summary

Thank You!

Movable frame

Support