CANGAROO-III解像型大気チェレンコフ望遠鏡による 活動電波銀河Centaurus Aからの TeVガンマ線の観測 Feb 23, 2005 ICEPP Symposium

1、宇宙線を観測
 2、検出原理
 3、CANGAROO-III telescopes
 4、Centaurus A観測、解析
 5、まとめ

宇宙線研究所 CANGAROO グループ 株木 重人

宇宙線

我々の銀河での宇宙線スペクトル

ガンマ線の放射機構: 非熱的

Active Galactic Nuclei (AGN)

Galaxy $10\% \Rightarrow AGN$

AGN - Time variation (1000sec)
It is 100 or more times brighter than the star of the whole galaxy.
A massive black hole (MBH) is in a nuclei.

AGN 10% \Rightarrow Jet (Blazer)

- Knot

+ AGN 統一モデルによる分類

Cherenkov image

Hillas parameters

Protonに比べgammaはイメージがシャープ

Stereo analysis

- 1. We can determine the direction of gamma-rays event by event.
- 2. We can explore the spatial structure of a gamma-ray objects as well as discriminate background cosmic-ray showers more efficiency.
- 3. The energy resolution of gamma rays has been improved the production height of Cherenkov light

"CANGAROO"

Collaboration of Australia and Nippon for a GAmma Ray Observatory in the Outback

Observation of high-energy gamma-rays from celestial objects with imaging atmospheric Cherenkov telescopes in Woomera, Australia

Woomera, South Australia 136°.46'E, 31°.06', 220m a.s.l

CANGAROO team

- University of Adelaide
- Australian National University
- Ibaraki University
- Ibaraki Prefectual University
- Kanagawa University
- Konan University
- Kyoto University
- Nagoya University
- National Astronomical Observatory of Japan

- Institute of Physical and Chemical Research
 - Shinshu University
- Institute for Space and Aeronautical Science
- Tokai University
- Tokyo Institute of Tehnology
- Yamagata University
- Yamanashi Gakuin University
- •

CANGAROO-III Cherenkov telescopes

Reflector

Frame	: parabolic
Diameter	: 10.4 m
Focal length	: 8 m
F AND THE	: 0.77
Total collecting area	: 57.3 m ²
Number of segments	: 114
Mirror diameter	: 80 cm
Mirror shape	: spherical
Mirror material	: GFRP

Camera

PMT (R3479, HPKK)

Camera

Light guide (LG)

Camera design

- Aluminum alloy
- Weight 110kg
- Diameter 800mm
- Length 1000mm
- 427 pixels
- Field of view 4° 0.168°/pixel
- Hexagonal arrangement
- -The characteristics of all PMT modules were calibrated individually.
- The linearity is up to 200 p.e.The deviation of uniformity is 11%.Light correction efficiency is 2 times up.

Active Galaxy Centaurus A

About Centaurus A

Radio galaxy Elliptical Fanaroff-Riley type I Misaligned BL Lac (~ 60°) Distance 3.5 Mpc

Parameter	value
a(J2000)	201°.3650633
δ(J2000)	-43°.0191125
Galaxy Size	18×14 arcmin
Radio Souce size	8×4 degrees
Distance	3.5 Mpc
Apparent Magnitude	7.96 mag
Total galaxy mass	$(4\pm 1) \times 10^{11} \text{ M}$
Outer radio lobe	250 kpc
Inner radio lobe	5 kpc
Inner radio jet	1.35 kpc
Relativistic nuclear jet	1.65 pc
Radio core	0.008 pc
Dust lane radius	7 kpc

The Optical image of Centaurus A (ESO/MPG 2.2-m telescope with WFI)

Radio Structure

Multiwave images

Observation

今回の観測では2台の望遠鏡のステレオ観測を行った。 Three fold coincidence での観測は行っていない。 2台でのステレオイベントはOFFラインで解析する。

Centaurus A

Observation date	Observation	Observation time	Average zenith
	time (T2-	(T2-T4)	angle
15 – 28 Mar 2004	FØ3 min	414 min	17 degree
15 – 28 Apr 2004	444 min	468 min	17 degree
Total	1047 min	882 min	

Data reduciton

Analysis method : Likelihood cut

ADC 5 p.e. < -25<TDC<25 nsec Scaler Top 40 Clustering : T6a Sum p.e. : 0 p.e < Distance 0 < distance < 1.9Likelihood parameters length,Width, Opening Angle, T2cog-T3cog L ratio cut 0.9 <

Probability density function

Likelihood analysis

Likelihood parameters

L(gamma-ray)=PDF(length1(g))*PDF(width1(g)) *PDF(length2(g))*PDF(width2(g)) ···· L(proton)= PDF(length1(p))*PDF(width1(p)) *PDF(length2(p))*PDF(length2(p)) ···

Integral Flux : $2-\sigma$ upper limit

Energy bin (GeV)	530	1490	3600
2σ upper limit flux (×10 ⁻¹¹ cm ⁻² sec ⁻¹)	0.31	0.063	0.017

Centaurus A arrival point map

Comparison with the past data

Our limit is 10 times lower flux than previous result.

Difficulties on LBL assumption

Possibility on HBL assumption

Estimation of Flux

Conclusion

我々はCANGAROO-III望遠鏡を用いて活動電波銀河 Centaurus Aをステレオ観測した。 CANGAROO-IIIでは望遠鏡を3台増設し、ステレオ観測を 可能にした。 その結果エネルギー閾値が500GeVで角度分解能は0.2°となった。 2次元Likelihoodを用いて解析 を行った結果、有意な信号は検出できなかった。 1050分の観測で0.31×10⁻¹¹cm⁻²sec⁻¹の2σの上限値を つけた。さらにHBLである場合、 $L_c/L_s < 1/580 < 1.$ $U_{\rm B} > 580 \text{ U sync} = 3500 \text{ eV/cc}$ $B=250 \mu G(R/12 kpc)^{-1}$ の制限をつけることができた。 この観測期間では大きなフレアは観測されず、TeV領域での 変動もquietであった。

Crab Analysis

Observation date	Observation time (T2- T3)	Average zenith angle
15 – 28 Dec, 2003	1215 min	62 degree
	Anon align and a she is	

Likelihood : Result

 θ^2 distribution Integral Flux L:0.9 < L:0.9 < Number of events Integral Flux (cm⁻²sec⁻¹) 0 0 0 0 01 01 -10 -11 HEGRA -12 Crab flux -13 50 -14 -15_† 10 0^L 10⁴ 10⁵ 10⁶ Energy (GeV) 0.1 0.2 0.3 10³ 0.4 θ^2 (deg²) 0.047 Excess : 123±21 event (@2350GeV) Significance : 6.0σ 1 Crab : 125 event/840.3 min.

Crab arrival point map

Super luminal motion

Relativistic beaming effect

Define beaming factor

電子の最大加速エネルギー

磁場が強いので(B~0.1G)、冷却と加速の釣り合いで決まる

•
$$t_{cool}(\gamma) = \frac{3m_e c}{4 (U_B + U_{sync} + U_{BLR}) \sigma_T \gamma} \propto \gamma^{-1}$$

•
$$t_{acc}(\gamma) \propto \gamma^n \quad (n > 0 \, \mathcal{O} \, cz \, dx)$$

 $\gamma_{max} \propto (U_B + U_{sync} + U_{BLR})^{-1/(n+1)}$

"暗い"ブレーザー: $\gamma_{max} = 10^{5-6}$ "明るい"ブレーザー: $\gamma_{max} = 10^{2-3}$

暗い天体のJetほど、加速されている。

ガンマ線の検出

Synchrotron self-Compton model

Electronics

Gamma-ray sources

Pulsar

- Fast rotating magnetized pulsar
 - = power generator
- Energy
 - \Rightarrow Pulsar wind out of light cylinder
- Shock wave in ambient medium ⇒ particle acceleration
- Gamma-rays by IC

Supernova remnant

- Expanding blast wave from explosion
 ⇒ shock wave
- Particles accelerated in shock wave
- Interaction with ambient medium
 - e + B (syncrotron)
 - e + Photons (IC)
 - $p + Gas(\pi^0)$
 - \Rightarrow Gamma-rays
- Cosmic ray origin? (energetics argument)