PRISM R&D Status

Osaka University Kuriyama Yasutoshi

Outline

- What is PRISM?
- Motivation
- Design
- R&D Status
- Summary

What is **PRISM**?

- PRISM = Phase Rotation Intense Slow Muon Source
 - Muon intensity: $10^{11} \sim 10^{12}$ /sec

(now: ~10⁸ /sec)

- Central Muon Momentum: 68MeV/c
- Momentum Spread width: ±3%
 - by Phase Rotation
- pion contamination: 10⁻¹⁸

LOI to J-PARC

A pulsed proton beam is required

PRISM Working Group Members

- KEK Accelerator Laboratory
 - Machida, Mori*, Ohmori, Yokoi
- *KEK* Cryogenics Science Center
 - Nakamoto, Ogitsu, Yamamoto
- Kyoto Univ. Department of Physics
 Sasao*
- Kyoto Univ. Accelerator Laboratory, Institute for Chemical Research
 Iwashita
- Kyushu Univ. Graduate School of Engineering
 - Ohnishi
- Osaka Univ. Graduate School of Science
 - Aoki, Kuno*, Sato, Arimoto, Yoshida, Takubo, Kuriyama, Nakahara, Sakamoto, Nakaoka, Horikoshi

11th ICEEP Symposium

*contact person

Why we need PRISM?

charged Lepton Flavor Violation

Beyond the Standard Model

Neutrino oscillation

◆Example: $μ^+ → e^+ γ$ muon flavor -1 0 electron flavor 0 -1

Not be observed yet!

Not be observed yet!

0

11th ICEEP Symposium

T

Why the Muon?

23 Feb. 2005

LFV catalog for the muons

• $\Delta L=1$ $-\mu^+ \rightarrow e^+\gamma$ $-\mu^+ \rightarrow e^+e^-e^+$ $-\mu^-+N(A,Z) \rightarrow e^-+N(A,Z)$ μ -e conversion in a muonic atom • $\Delta L=2$ $-\mu^+e^- \rightarrow \mu^-e^+$

etc...

Which Muon LFV Process Next?

	issue	Beam Requirement
μ - ≯eγ	detector limited	a continuos beam
µ→eee	detector limited	a continuos beam
µN→eN	beam limited	a plused beam

What is µ-e conversion?

Neutrino-less muon nuclear capture (= μ -e conversion) $\mu^-+(A,Z) \rightarrow e^-+(A,Z)$

 $B(\mu N \rightarrow eN) = \frac{\Gamma(\mu N \rightarrow eN)}{\Gamma(\mu N \rightarrow \nu N)}$

nuclear muon capture $\mu^{-}+(A,Z) \rightarrow \nu_{\mu}+(A,Z-1)$

nucleus

()

muon decay in orbit $\mu \rightarrow e^{-} \nu_{e} \nu_{\mu}$

23 Feb. 2005

µ-e conversion Signal & Background

Sindrum-II Result (target: gold)

Beam Requirements for µ-e conversion

Beam is critical element for µ-e conversion

- Higher muon intensity
 - more than $10^{12} \mu$ -/sec
- pulsed beam
 - rejection of background from proton beam
 - Narrow energy spread
 - allow a thinner muon stopping target
 - →better e⁻ resolution and acceptance

PRISM

What is PRISM? once more...

• Muon intensity: $10^{11} \sim 10^{12}$ /sec Central Muon Momentum: 68MeV/c Momentum Spread width: ±3% 20% → 3% by Phase Rotation Pion contamination: 10⁻¹⁸ for 150m in PRISM-FFAG Ring Repetition: 100Hz

PRISM overview

PRISM consists of

- (Proton beam)
- Pion Production Target
- Pion Capture
- Transport
- Injection & Ejection
- FFAG Ring
 - for phase rotation
 - Magnet
 - -RF

PRISM-FFAG ring construction

- PRISM ring construction has been approved in JFY2003.
 - 5 year plan
 - 3 year construction
 - 2 year test

What is FFAG ?

FFAG = Fixed Field Alternating Gradient Synchrotron FFAG field

- FFAG Advantage
 - Large Acceptance

 $B(r) = B_0 \left(\frac{r}{r}\right)^k$

- Both Longitudinal and Transverse directions
- strong focusing
- Fast Acceleration
 - due to fix magnetic field

Suitable for muon acceleration

PRISM RF Requirement

High Gradient RF system is required for Rapid Phase Rotation

23 Feb. 2005

PRISMRF system Install RF cavity 8 straight sections One cavity consists of 5 gaps and 1 gap includes 6 cores

PRISM RF R&D

AMP, PS, D-AMP and MA Cores have been produced
AMP Test with test cavity has done.

• Achieved $43kV/gap @5Mhz \rightarrow 165kV/m$ (expected) (using 60A ps, 700 Ω Cavity w/ PRISM RF Cavity(900 Ω)

Phase Rotation Simulation

11th ICEEP S

Simulation condition •Initial phase •10m TOF • \pm 20% momentum spread •RF •45kV/gap (Total 1,800kV) •8sector*5=40gaps •V_{rf} = V₁sin0+V₂sin20+V₃sin30 •w/ TOSCA Magnet Field

Result: ±20% Momentum Acceptance Momentum Spread ±2%@6turns

23 Feb. 2005

Summary

- PRISM-FFAG ring construction has started
- Magnet
 - Magnet design has been almost finished
 - Production of coil has been underway
- RF
 - RF-AMP has been tested using test cavity and obtained 43kV gap voltage (it's a design goal)
 - 1st PRISM RF cavity will be produced next month
- Phase Rotation simulation has been started and obtained ±2% momentum spread after 6 turns

Construction Schedule

• JFY2003

- RF Amp. Production
- JFY2004
 - RF cavity and FFAG Magnet construction
- JFY2005
 - FFAG Magnet production continue
 - Test PRISM RF System
- JFY2006
 - FFAG Magnet production complete
- JFY2007
 - Test Beam Acceleration and Phase Rotation