B physics with full reconstruction tag technique at B-factory

> Takahiro Matsumoto (Tokyo Metropolitan University)

 Introduction
 Full recon タグを用いた 物理結果 (Belle, Preliminary)
 - |V_{ub}|の測定
 - B→τ v 探索
 Super B 計画

Full reconstruction tag Elt?

- Bファクトリー実験で生成された B 中間子対の内、片側を ハドロニックな崩壊過程 (B→Dπ など) により全再構成すること。
 反跳側のB中間子の運動量、フレーバーを知ることができる 究極の手法 (B中間子ビーム)。
- タグ効率は O(0.1%) と小さいが、Belle実験におけるB中間子収 集事象の増加に伴い、物理解析への応用が去年から ようやく注目されはじめてきた。

Full recon を用いた物理結果 (Belle)

- V_{ub} 関連
 B→X_uℓ v
 崩壊分岐比、|V_{ub}| 測定 (hep-ex/0408115)
 B→τv探索 (hep-ex/0408144)
 |V_{cb}| 関連
 - $-B \rightarrow X_C \ell v$

T. Matsumoto (TMU)

• 崩壊分岐比測定 (hep-ex/0411066, submitted to PLB)

3

- Hadronic mass moments 測定 (hep-ex/0408139)
- Electron energy moments 測定 (hep-ex/0409015)

B中間子の 全再構成

 π, ρ, a_1

C

U

W+55

■ 再構成に用いた崩壊過程 $B^{+} \rightarrow \overline{D}^{(*)0} + \pi^{+} / \rho^{+} / a_{1}^{+} / D_{S}^{(*)+}$ $\longrightarrow \overline{D}^{0} \pi^{0} / \overline{D}^{0} \gamma \qquad \longrightarrow D_{s}^{+} \gamma$ $B^{0} \rightarrow D^{(*)-} + \pi^{+} / \rho^{+} / a_{1}^{+} / D_{S}^{(*)+}$ h $\rightarrow \overline{D}^0 \pi^- / D^- \pi^0$ $D_{s}^{+} \gamma$ $\overline{D}^0 \to 7 \text{ modes} \quad D^- \to 6 \text{ modes} \quad D_s^+ \to 2 \text{ modes}$ 全部で180崩壊過程 1過程の崩壊分岐比 <~ 0.1% 2体崩壊に限定 - CPU時間の効率化、S/N向上のため

T. Matsumoto (TMU)

全再構成された B 中間子事象

250fb⁻¹

■ 事象数~660k、収集効率~0.3%、Purity~0.5

$B \rightarrow X_u \ell v w/$ full recon

- |V_{ub}| の測定

回目的

PDG formula $|V_{ub}| = 0.00424 \left[\frac{B(B \rightarrow X_u \ell \nu)}{0.002} \frac{1.61 ps}{\tau_B} \right]^{1/2} + \text{latest HQ parameters}$ (5% uncertainty)

V_{ub}

 W^+

U

6

■ チャレンジングである点

– 約50倍のバックグラウンド、B→X_cℓv の抑制
 – |V_{ub}|測定における理論の不定性をできるだけ抑える

2つの方法の比較

Endpoint lepton energy (タグなし) - きついカット ($p_\ell > 2.3 \text{ GeV/c}$)が必要

 − 約10%の事象しか使用できない
 →全体の崩壊分岐比への外挿時に おける理論の不定性が大きくなる

M_X, q² 変数による方法 (タグあり)

- バックグラウンドをより制御できる
 より広い領域のフェーズスペースにおける事象を利用できる
- →理論の不定性をより制御できる 可能性がある!

$\Delta B(B \rightarrow X_u \ell v)$ 測定 (M_X < 1.7 GeV/c², q² > 8 GeV²)

	M_{x} distribution (q ² >8GeV ²)
■ M _X 分布から	Expected
$-N(b \rightarrow u) = 174 + -26$	$ \begin{array}{c} f \\ 150 \\ f \\ 125 \\ h \rightarrow c \end{array} $
M _{X、} q ² で限られた領域における	
崩壊分岐比をまず推定する	
	M_{x} (GeV/c ²)
$\Delta B(B \to X_u \ell \nu) = B(B \to X \ell \nu) (N_{b \to u} / N_{sl}) (\eta / \epsilon)$	$\mathcal{E}_{b \to u}$
$\mathbb{N}_{1} = (50.7 \pm 0.4) \times 10^{3}$	
$= 1_{sl} - (30.7 \pm 0.4) \times 10^{-10}$	
$= 0.74 \pm 0.03$	
$\mathbf{E}_{b \to u} = 0.2/4 \mathbf{E}_{b \to u} \text{ selection en.}$	
= B(B - A + V) = 0.1073 + 0.0028 (PDG2004) - S 毎 記 美 た へ に す た め 佶 田	-40
ラ末礼訣左をいらりたの使用	0 0.5 1.0 1.5 2.0 2.5 3.0 m _X (GeV/c ²)
$\Delta B(B \to X_u \ell \nu) = [0.99 \pm 0.15 \pm 0.000 \pm 0.0000 \pm 0.0000 \pm 0.00000 \pm 0.00000000$	$0.18 \pm 0.04 \pm 0.07$]×10 ⁻³
stat.	syst. $b \rightarrow u$
T. Matsumoto (TMU) 22/Feb/2005 ICEPP S	Symposium 9

いよいよ |Vub | 測定

hep-ex/0407052 ■ f_uの推定 GeV²/c² $\Delta \chi^2 = 1.0$ $B(B \to X_{\mu} \ell \nu) = \Delta B(B \to X_{\mu} \ell \nu) / f_{\mu}$ f_uはOPE (Operator Product Expansion)に基づく -0.5 摂動QCDで計算する。しかし、摂動計算をより正 λ_1^{SF} しく行うために Shape Function に実験で決めた パラメータを適用する必要がある。 -1 Belle - B quark mass , Fermi motion inside B meson →B→Xsyの Ey スペクトラム分布から評価 0.4 0.5 0.6 0.7 0.8 0.9 $\Lambda^{\sf SF}$ $f_{\mu} = 0.294 \pm 0.044$ GeV/c^2 崩壊分岐比から |Vub| 測定 $|V_{ub}| = [5.54 \pm 0.42 \pm 0.50 \pm 0.12 \pm 0.19 \pm 0.42 \pm 0.27] \times 10^{-3}$ $b \rightarrow u. \quad b \rightarrow c. \quad f_{\mu}$ $Br \rightarrow |V_{ub}|$ stat. syst. T. Matsumoto (TMU) 22/Feb/2005 ICEPP Symposium 10

|Vub|の測定値

● さまざまな|Vub|値... HFAG では、同じ 理論体 系に基づく値を今のところ , 使っている。 $|V_{ub}| = (4.70 + -0.44) \times 10^{-3}$ 10%の誤差 将来への見通し Full recon サンプルの増加 実験データにより 理論不定性をもっと抑える Unquenched 手法に基づく Form factor を用いた Exclusive による |Vub| などにより、より精度の高い |Vub| 測定を目指す!

11

ユニタリティー三角形と |Vub|

 ▶ |V_{ub}/V_{cb}|² ~ ρ² + η²
 ▶ |V_{ub}|(+|V_{cb}|)の精密 測定により小林益川 モデルを検証できる

B→J/ΨK_Sによる sin2φ₁ 測定と異なる 側面からの検証という 意味で重要

T. Matsumoto (TMU)

22/Feb/2005 ICEPP Symposium

12

- New physics の探索

 $r_{H} = 1 - \tan^{2} \beta \frac{m_{B}^{2}}{m_{H^{\pm}}^{2}}$

13

- ex.) もしCharged Higgs があると \rightarrow Br = Br(SM) x $r_{\rm H}$
 - → $tan\beta/M_H$ に制限

T. Matsumoto (TMU)

$B^+ \rightarrow \tau^+ v w/$ full recon

● チャレンジングである点

- B⁺ \rightarrow $\tau^+ \nu$, $\tau^+ \rightarrow \ell \nu \nu$, n $\pi \nu$
- 終状態に複数のニュートリノ
- Recoil selection
 - No extra charged track/ π^0
 - Missing momentum cut depending on the mode
 - $P_{miss} > 1.0 \sim 1.2 \text{ GeV/c}$
 - Mass cuts for intermediate states
 - Residual energy, E_{ECL}
 - $E_{ECL} = E_{tot} E_{rec,B} E_{track}$
 - $E_{ECL} < 1.0 \sim 2.2 \text{ GeV}$

Decay Mode	Branching ratio (%)
$\tau^- \to \mu^- \nu \bar{\nu}$	$17.37 \pm 0.06\%$
$\tau^- \to e^- \nu \bar{\nu}$	$17.84 \pm 0.06\%$
$\tau^- \to \pi^- \nu$	$11.06 \pm 0.11\%$
$\tau^- \to \pi^- \pi^0 \nu$	$25.40 \pm 0.14\%$
$\tau^- \to \pi^- \pi^+ \pi^- \nu$	$9.52 \pm 0.09\%$

T. Matsumoto (TMU)

(CL(s+b)/CL(b) = 1 - 0.9)

*

Modified frequentist approach

- NIM A434, 435, 1999

Data

Generic MC

140fb⁻¹

15

Data

Generic MC

au Decay Mode	Efficiency $\times BR$ (%)	Background	Observed	Observed limit
		Expected	Events	(90%C.L.)
$\tau^- \to \mu^- \nu \bar{\nu}$	9.2 ± 1.6	9.8 ± 2.9	6	$3.0 imes 10^{-4}$
$\tau^- \to e^- \nu \bar{\nu}$	8.8 ± 1.6	9.4 ± 2.9	10	4.6×10^{-4}
$\tau^- \to \pi^- \nu \bar{\nu}$	4.1 ± 0.5	5.4 ± 2.1	6	7.2×10^{-4}
$\tau^- \to \pi^- \pi^0 \nu$	1.8 ± 0.2	4.1 ± 1.6	3	$10.5 imes 10^{-4}$
$\tau^- \to \pi^+\pi^-\pi^+\nu$	1.6 ± 0.2	4.8 ± 1.6	3	11.7×10^{-4}
	Combined			$2.9 imes 10^{-4}$

観測された事象数はバックグラウンドの予測と一致

T. Matsumoto (TMU)

Br(B⁺ →τ⁺v)の歴史

 Belleの結果が最も 厳しいリミットを与える。
 年々、SMの予測値に 近づいてきている。
 B⁺ → τ⁺ v 観測まであ ともう少し?(数年?)

Br(B⁺ → $\tau^+\nu$) < 2.9 x 10⁻⁴ (@90% CL), tanβ/M_H+ < 0.33 GeV⁻¹

				All and an	
	Observable	SuperK	EKB	LHCb	
		(5 ab^{-1})	(50 ab^{-1})	$(0.002ab^{-1})$	
	$\Delta S_{\phi K_{\phi}^{0}}$	0.079	0.031	0.2	1
Summary -	$\Delta S_{K+K-K_{2}}^{*}$	0.056	0.026		
of	$\Delta S_{\eta' K_{s}^{0}}$	0.049	0.024	×	
	$\Delta S_{K_{k}^{0}K_{k}^{0}K_{k}^{0}}$	0.14	0.04	×	
physics \neg	$\Delta S_{\pi^0 K^0}$	0.10	0.03	×	
reach	$\sin 2\chi \ (B_s \to J/\psi \phi)$	×	×	0.058	
	$\mathcal{S}_{K^{*0}\gamma}$	0.14	0.04	×	
LoI Executive	$\mathcal{B}(B \to X_s \gamma)$	5%	5%	×	
Summary	$A_{CP}(B \to X_s \gamma)$	0.011	5×10^{-3}	×	
Table 1	$C_9 \text{ from } A_{FB}(B \to K^* \ell^+ \ell^-)$	32%	10%		
	$C_{10} \text{ from } A_{FB}(B \to K^* \ell^+ \ell^-)$	44%	14%		
	$\mathcal{B}(B_s \to \mu^+ \mu^-)$	×	×	4σ (3 years)	
	$\mathcal{B}(B^+ \to K^+ \nu \nu)$		5.1σ	×	
$(\bigcirc) \cup (\bigcirc)$	$\mathcal{B}(B^+ \to D\tau\nu)$	8%	2.5%	×	
	$\mathcal{B}(B^0 \to D \tau \nu)$	3.5σ	9%	×	
$O \sim V$	$\sin 2\phi_1$	0.019	0.014	0.022	
Items with	$\phi_2 \ (\pi\pi \text{ isospin})$	3.9°	1.2°	×	
Eull as a set to a	$\phi_2(\rho\pi)$	2.9°	0.9°	×	
Full recon tag	$\phi_3 (DK^{(*)})$	4°	1.2°	8°	
* Impossible	$\phi_3 \ (B_s \to KK)$	×	×	5°	
at LHCb	$\phi_3 \ (B_s \to D_s K)$	×	×	14°	
	$ V_{ub} $ (inclusive)	5.8%	4.4%	×	
	$\mathcal{B}(\tau \to \mu \gamma)$	< 1.8 × 10 ⁻⁸	6		
T. Matsumoto (TMU) 22/Feb/2005 ICE	EPP Symposium		9) (C	20

Summary

Full recon タグにより、運動量、フレーバーが既知の 究極の B中間子ビームを得ることができる。

- KEKB加速器の性能向上により、100万個に近い全再構成 B中間子事象が既に得られており、多様な物理測定が 始められている。
- しかしながら、殆どの物理測定は統計でリミットされている。 より高いルミノシティーが必要不可欠。
- Super B プロジェクトでは、最終的には現在の 100倍に近い データを収集する予定。これらのデータを用いて、 小林・益川モデルを十分な精度でのテストし、 新しい物理の発見、モデルの検証へと結びつけていきたい。