

Belle実験における B⁰→J/ $\psi \pi^{+}\pi^{-}$ 崩壊の研究

新粒子発見プログラム **B-Lab**

奈良女子大学大学院 高エネルギー物理学研究室 井本絢子

B⁰からもB⁰からも崩壊できるCP固有状態をfとする

A.Imoto (Nara-wu)

Study of B⁰->J/ $\psi\pi^+\pi^-$

ICEPP symposium

2005/2/22

6

B^0 reconstruction $\Delta E - M_{bc}$ dist.

Background estimation

 $M_{\pi\pi}$ 分布を0.2GeV/c²毎に区切り、それぞれの領域での Δ E分布からバックグラウンドの事象数を決定する。

Branching ratio : $B^0 \rightarrow J/\psi \rho^0$

$$\mathsf{Br}(\mathsf{B}^{0} \to \mathsf{J}/\psi \rho^{0}) = \frac{\mathsf{N}_{\mathsf{obs}}}{\varepsilon \cdot \mathsf{Br}(\mathsf{J}/\psi \to \mathsf{I}^{+} \mathsf{I}^{-}) \cdot \mathsf{N}_{\mathsf{BB}}}$$

$N_{obs} = 146 \pm 17$	系統誤差	±9.1%	
Br(J/ψ→l+l-)= 0.118±0.002 検出効率:ε= 0.278±0.002 N _{BB} = (1.52±0.01)×10 ⁸	検出効率	±2.7%	
	B.G.の見積もり	±5.1%	
	粒子識別·再構成	±6.4%	
	$Br(J/\psi \rightarrow +)$	±1.7%	
preliminary	$N_{B\overline{B}}$	±0.4%	
A BANNING AND			
$Br(B^{0} \rightarrow J/\psi \rho^{0})=(2.9\pm0.3(stat.)\pm0.3(svs.))\times10^{-5}$			

A.Imoto (Nara-wu)

Branching ratio : $B^0 \rightarrow J/\psi f_2$

$$Br(B^{0} \rightarrow J/\psi f_{2}) = \frac{N_{obs}}{\varepsilon \cdot Br(J/\psi \rightarrow l^{+} l^{-}) \cdot Br(f_{2} \rightarrow \pi^{+} \pi^{-}) \cdot N_{B\overline{B}}}$$

$N_{obs} = 28 \pm 11$	系統誤差	±21.8%	
	検出効率	±0.7%	
Br $(J/\psi \rightarrow + ^{-}) = 0.118 \pm 0.002$	B.G.の見積もり	±20.6%	
Br ($f_2 \rightarrow \pi^+ \pi^-$) = 0.565±0.002	粒子識別·再構成	±6.4%	
検出効率:ε=0.278±0.002	$Br(J/\psi \rightarrow I^+I^-)$	±1.7%	
$N_{B\bar{B}} = (1.52 \pm 0.01) \times 10^{8}$	$Br(f_2 \rightarrow \pi^+\pi^-)$	±2.9%	
preliminary	N _{BB}	±0.4%	
Br(B ⁰ → J/ ψ f ₂) =(9.9±4.2(stat.)±2.2(sys.))×10 ⁻⁶ Br(B ⁰ →J/ ψ f ₂) < 1.5×10 ⁻⁵ (@90%C.L.)			

Branching ratio :
$$J \rightarrow J / \psi \pi^+ \pi^-$$

ノンレゾナントB⁰→J/ $\psi \pi^{+}\pi^{-}$ 崩壊 → 寄与は小さい

 $bkgを1\sigma下げたfit結果 N_{obs}=15\pm20$

 $Br(B^{0} \rightarrow J/\psi \pi^{+}\pi^{-}(NR)) < \frac{N_{obs(@90\%C.L.)}}{\varepsilon \cdot Br(J/\psi \rightarrow I^{+}I^{-}) \cdot N_{\bar{B}B}}$

N_{obs(@90%C.L.)} = 48 Br (J/ ψ →I⁺I⁻) = 0.118 検出効率: ε = 0.278 N_{BB} = 1.52 × 10⁸

preliminary

Br(B⁰ → J/ψ π⁺π⁻(NR)) < 1×10⁻⁵ (@90% C.L.)

A.Imoto (Nara-wu)

2005/2/22

20

4. Summary

$$\beta^{0} \rightarrow J/\psi \rho^{0}$$
崩壊の測定
 $preliminary$
 $prelimina$

A.Imoto (Nara-wu)

Study of B⁰->J/ $\psi\pi^+\pi^-$

ICEPP symposium

2005/2/22 21

ノンレゾナントB⁰→J/ $\psi \pi^{+}\pi^{-}$ 崩壊の測定

preliminary

Br(B⁰ → J/ ψ π⁺π⁻(NR)) < 1×10⁻⁵ (@90% C.L.)

ノンレゾナンスの寄与が小さいことを確認。 この崩壊過程の上限値を初めて設定。

future plan

Dataを増やしノンレゾナンスの精密検証、new mode の探索を行う。 B⁰->J/ $\psi \rho$ ⁰崩壊過程を用いsin2 Φ_1 の測定へ。

http://belle.kek.jp/b-lab/

新しい素粒子発見のための 公開データ解析プログラム

A.Imoto (Nara-wu)

B-Lab

ICEPP symposium

2005/2/22 23

http://www.kek.jp/newskek/2004/julaug/B-Lab.html

高校にて課外授業 大学の講義でも使われています

新発見!-> 論文を発表、Belle測定器にプレートを貼り付ける

A.Imoto (Nara-wu)

ICEPP symposium

