Search for Q-ball in Super-Kamiokande

2005/Feb./21 ICEPP Symposium @Hakuba Yumiko Takenaga 武長祐美子(ICRR)

Contents

- introduction
- Q-ball properties
- MC simulation
- data reduction
- flux limit
- summary

Introduction

- The Universe has positive baryon number, but the early Universe was baryon symmetric.
 - We need a mechanism to break the baryon symmetry.
- What is dark matter ?

Q-ball can explain these two problems

The properties of Q-balls

- Q-balls are solitons in scalar field which can be stabilized by conservation of a U(1) charge
- aggregates of squark
- Charged Q-ball : large energy loss, MACRO
- Neutral Q-ball : can be detected in SK
- Mass M_Q , radius R_Q

$$M_{Q} = \frac{4\pi\sqrt{2}}{3}M_{s}Q^{\frac{3}{4}}$$
$$R_{Q} = \frac{1}{\sqrt{2}}M_{s}^{-1}Q^{\frac{1}{4}}$$

Q: barion number

 M_s : SUSY breaking scale ~1TeV

Cross section :

$$\sigma = \pi R_Q^2 = \frac{16\pi^2}{9} M_Q^{-2} Q^2 \approx 6 \times 10^{-34} Q^{\frac{1}{2}} \left(\frac{1TeV}{M_s}\right)^2 cm^2$$

The interaction of neutral Q-balls

KKST(Kusenko-Kuzmin-Shaposhnikov-Tinyakov) process

- The scalar field has the large expectation value inside Q-balls

→ breaking SU(3) symmetry

- When a Q-ball collides with a nucleon, the nucleon dissociates into three quarks
- The quarks are converted into squarks via gluino exchange and absorbed into a Q-ball
- A Q-ball emits 2 or 3 pions with total energy about 1GeV per nucleon
- Successive events are detected along a single trajectory
- similar to monopole signal

Q + Nucleon \rightarrow (Q + 1) + pions : Q:barion number

• Energy loss : emitted energy by nucleon absorption

 $\sigma = 100 \text{mb}: \qquad \frac{dE}{dx} = \frac{1GeV}{\lambda} = \sigma\rho N_A \cdot 1GeV \approx 30 MeV/cm$ $\lambda: \text{ mean free path}$ $M_Q \sim 10^{19} \text{MeV} \longrightarrow \text{ Energy loss is negligible}$

Bounds on flux and mass for Q-balls

(J. Arafune et al. Phys. Rev. D 62 (2000) 105013)

Super-Kamiokande

- Cylindrical water Cherenkov detector
- Diameter : 39.3m、Height : 41.4m
- Volume : 50kt (Inner Detector : 32kt,

	Outer Detector : 18kt)
1996/April	SK-I start
2001/July	SK-I finished
2001/Nov.	Accident
2002/Dec.	SK-II started

- The number of PMTs of the Inner Detector : 5,182 (47% SK-I:11,146)
- PMTs are enclosed with cases made of acrylic case and FRP(Fiber Reinforced Plastics) to prevent from breaking PMTs by a shock wave

Q-ball simulation

- generate Q-balls randomly in 50m sphere
- Total charge of emitted pions is equal to that of a collided nucleon
- assuming that the number of emitted pions per nucleon is two or three with equal probability
- not lose energy by collision with a nucleon and collide with next one
- Maximal number of successive events is 20
- Q-ball velocity has some distribution

100m

Mean free path Mass Baryon Cross Mean section (mb) interval time number (in water) (MeV) 500µsec 2.6x10¹⁰ 170m 3.8x10¹⁴ 0.1 50µsec 2.6x10¹² 1.2x10¹⁶ 17m 1 5µsec 10 1.7m 3.8x10¹⁷ 2.6x10¹⁴ 100 500nsec 1.2x10¹⁹ 2.6x10¹⁶ 17cm

assuming $M_s = 1 \text{TeV}, v = 10^{-3} \text{c}$

The distribution of Q-ball velocity

- If Q-balls are Dark matter, the velocity is assumed to have an approximately Maxwellian distribution with v_{rms}~270km/sec
- Considering the earth goes through this dark mater distribution with the velocity of solar system 220km/sec, one obtain the Q-ball velocity to superpose these two velocities

$$\vec{v} = \vec{v}_m - \vec{v}_e$$
$$v^2 = v_m^2 + v_e^2 - 2v_m v_e \cos\theta$$

- v: the Q-ball velocity from the earth
- \boldsymbol{v}_m : the Q-ball velocity with

Maxwellian distribution

 v_e : the velocity of solar system ~220km/sec

Sequential events MC:10mb occurred by one Q-ball 1st event 2nd 3rd 4th E MonteCar BODOGOII BOODOGOI NUMPE: North Car TRG ID: 00000011 FWSK: 80000011 FWSK: 80000003 000 Wr.1W:3735 000 Wr.1W:3735 000 FC 0 0 0 0 000 CENERS REL: 20/10/00 BET CANE 30/10/00: RTOT $5.2 \mu sec$ $9.4 \mu sec$ 10.7µsec Comnt: hit timing distribution in 1 event

Data reduction

- Data set : SK-II 416.2days 2003/Jan./21 ~2004/Jun./29
- Sequential events with large charge are regarded as Q-ball events
- Main background event is a coincidence event with cosmic muon Q-ball

1st reduction

- Charge (Inner Detector) cut
- Need more than two sequential events

A chain of events which are occurred by one Q-ball

The distribution of total charge (ID)

The distribution of charge(ID) within 300nsec time window

2nd reduction

- reject muon and lowE events
- 1 Total charge(ID) vs.number of hit (OD) cut
 - reject muon events

and low energy events

- require large charge(ID)
 & small # of hit (OD)
- ② Noise events cut
 - reject continuous electronics noise events
 - large charge (ID) & large goodness
- ③ Separated events cut
 - one cosmic ray muon event is separately recorded to 2 events
- Muon events cut
 - reject muon events with small # of hit (OD) and lowE events

$$\begin{array}{c} \text{1st}\\ \text{event} \end{array} + \begin{array}{c} 2 \text{nd}, 3 \text{rd}, 4 \text{th}, \dots \text{event} \\ \mu + \text{lowE}, \dots \\ \mu + \mu \dots \\ \text{lowE} + \text{lowE}, \dots \end{array}$$

① Number of hit (OD) vs.total charge(ID) after the 2nd event reject muon and lowE events

contained is selected.

③ Separated events cut

- One cosmic ray muon event is separately recorded to 2 events
- Reject

Number of events in a chain of events = 2 &

number of hit (OD) of the 2nd event > 6 0

Reduction summary

Data

reduction	Data
1st cut	1,679,400
total charge(ID)vs. nhit (OD)cut	77
noise event cut	45
separated events cut	19
muon event cut	1

One chain of events is observed contains 2 events during 416.2 days of live time (2003/Jan/21~2004/Jun/29)

MC

reduction	MC:0.1mb	MC:1mb	MC : 10mb	MC : 100mb
generated events	20,000	20,000	20,000	20,000
1st reduction	158(0.8%)	1488(7.4%)	2863(14%)	3184(16%)
total charge(ID)vs.nhit(OD)cut	20(13%)	1013(68%)	2744(96%)	2970(93%)
noise event cut	19(95%)	1011(100%)	2734(100%)	2962(100%)
separated events cut	19(100%)	1011(100%)	2734(100%)	2961(100%)
muon event cut	19(100%)	995(98%)	2720(99%)	2918(99%)
Total reduction efficiency	0.095%	4.98%	13.6%	14.6%

obtain the Q-ball flux upper limits using the efficiencies

Q-ball ?

Cosmic ray μ + atmospheric ν ?

Estimate the experimental value to be coincident the 1st event with atmospheric v in 100µsec during 416.2days live time

Description Sector Sector

• event rate of atmospheric v : 11.4 events/day (all volume)

• event rate of the 1st event :0.34 events/sec

 $11.4 events/day \times 416.2 days \times 0.34 events/sec \times 100 \mu sec = 0.16 events$

the expected value = 0.16 events

The probability to observe more than 1 event = 15%

We can considered that one residual chain of events is an accidental coincidence event between cosmic ray μ and atmospheric ν

Flux upper limitFlux upper limit
$$F < \frac{N_0}{\varepsilon S_{eff} \Omega T}$$
Effective aperture : $S_{eff} \Omega = \varepsilon \cdot \pi r^2 \cdot 4\pi = \varepsilon \cdot \pi 50^2 \cdot 4\pi (m^2 sr)$ ε : detection efficiency (from MC reduction)T: live time416.2days $N_0 = 3.9$ (90%C.L.): expected value if we can find one observed event

cross section	detection efficiency	effective aperture (cm ² sr)	Flux upper limit (cm ² sr ⁻¹ sec ⁻¹)
0.1mb	0.095%	9.4x10 ⁵	1.2x10 ⁻¹³
1mb	4.98%	4.9x10 ⁷	2.2x10 ⁻¹⁵
10mb	13.6%	1.3x10 ⁸	8.1x10 ⁻¹⁶
100mb	14.6%	1.4x10 ⁸	7.5x10 ⁻¹⁶

Summary

- Search for Q-balls has been carried out during SK-II 416.2 days(2003/Jan/21~2004/Jun/29) of live time.
- One Q-ball candidate has been observed, but it can be regarded to be an accidental coincidence between cosmic ray muon and atmospheric neutrino.
- The upper limits on Q-ball flux are calculated $\sigma = 0.1 \text{mb}$: F<1.2x10⁻¹³(cm²sr⁻¹sec⁻¹) $\sigma = 1 \text{mb}$: F<2.2x10⁻¹⁵(cm²sr⁻¹sec⁻¹) $\sigma = 10 \text{mb}$: F<8.1x10⁻¹⁶(cm²sr⁻¹sec⁻¹) $\sigma = 100 \text{mb}$: F<7.5x10⁻¹⁶(cm²sr⁻¹sec⁻¹)
- We can obtain more stringent flux limits than those of Kamiokande by about 3~25 times