### 二重 β 崩壊検出のためのCANDLES の開発

Kayoko Ichihara

### Department of Physics, Osaka Univ.

#### T.Kishimoto, I.Ogawa, R.Hazama, S.Yoshida, S.Umehara, K.Matsuoka and Y.Hirano

for the CANDLES collaborations

### Contents

Physics motivation of double beta decay
 Study of double beta decay in the world

3. Double beta decay of <sup>48</sup>Ca

- 4. CANDLES system
- 5. BG rejection (Pulse shape discrimination)

6. Goal of CANDLES system

# Physics motivation of double beta decay - 1 -

### **1-1. Introduction**

Neutrino oscillation  $\longrightarrow$  mixing angle,  $\Delta m^2$ 

- Absolute mass of neutrino? & Mass pattern?
- Why neutrinos are so light ?
- Is there heavy neutrino ? Dirac or Majorana ?
- Matter-antimatter asymmetry in Universe.

Is lepton number violated ?

Most sensitive prove

**New physics beyond the Standard Model !!** 

### 1-2. Double beta decay



#### 1-3. Double beta decay

<sup>48</sup>Ca,<sup>76</sup>Ge,<sup>87</sup>Se,<sup>96</sup>Zr,<sup>100</sup>Mo, <sup>116</sup>Cd, <sup>128</sup>Te,<sup>130</sup>Te,<sup>136</sup>Xe,<sup>150</sup>Nd.





### 1-4. Effective mass vs minimum mass



http://www.aps.org/neutrino

# Double beta decay in the world - 2 -

### 2-1. Current situation in experimental DBD

| Isotope           | Exposure           | BG       | $T0^{\nu\beta\beta}_{1/2}$           | <m<sub>\beta\beta\beta}&gt;</m<sub> | Collaboration          |
|-------------------|--------------------|----------|--------------------------------------|-------------------------------------|------------------------|
|                   | (kmole-y)          | (counts) | (year)                               | (eV)                                | (Inclusive/ Exclusive) |
| <sup>48</sup> Ca  | 5x10 <sup>-5</sup> | 0        | > 1.4 x 10 <sup>22</sup>             | < 7.2-44.7                          | ELEGANT VI             |
| <sup>76</sup> Ge  | 0.943              | 61       | $= 1.2 \text{ x } 10^{25}$           | = 0.44                              | Helberg-Moscow         |
| <sup>76</sup> Ge  | 0.117              | 3.5      | $> 1.6 \text{ x } 10^{25}$           | < 0.33-1.35                         | 1 EEX                  |
| <sup>82</sup> Se  | 7x10 <sup>-5</sup> | 0        | $> 2.7 \text{ x } 10^{22} \text{ *}$ | < 5.0                               | (HC) *: 68%CL          |
| <sup>100</sup> Mo | 5x10-4             | 4        | $> 5.5 \text{ x } 10^{22}$           | < 2.1                               | E GANT V               |
| <sup>116</sup> Cd | 1x10 <sup>-3</sup> | 14       | $> 1.7 \text{ x } 10^{23}$           | < 1.7                               | (Ex)                   |
| <sup>128</sup> Te | Geochem.           | NA       | $> 7.7 \text{ x } 10^{24}$           | < 1.1-1.5                           | (In)                   |
| <sup>130</sup> Te | 0.0025             | 5        | $> 5.5 \text{ x } 10^{23}$           | < 0.37-1.9                          | CUORICINO (In)         |
| <sup>136</sup> Xe | 7x10 <sup>-3</sup> | 16       | $> 4.4 \text{ x } 10^{23}$           | < 1.8-5.2                           | Gotthard               |
| <sup>150</sup> Nd | 6x10 <sup>-5</sup> | 0        | $> 1.2 \text{ x } 10^{21}$           | < 3.0                               | (Fer                   |

Uncertainty in  $|M_{0v}|^{(Ex)}$ 

http://www.aps.org/neutrino

#### Z-Z. Heiderberg-woscow (Enriched "Ge



Phys. Lett. B 586 (2004) 198

### 2-3. CUORICINO (Cryogenic Bolometor)



 $T_{1/2}^{0\nu} > 5.5x10^{23}years$  for <sup>130</sup>Te(~30kg) <mv> < 0.37 - 1.9eV Phys. Lett. B 584 (2004) 260



#### 2-5. Present status & future experiment



# Double beta decay of <sup>48</sup>Ca - 3 -

3-1. Double beta decay of <sup>48</sup>Ca

- CaF<sub>2</sub> scintillation detector Source= Detector
  - : High Detection Efficiency
- Largest Q<sub>ββ</sub> value : Low background



### **3-2. ELEGANT VI**



- Passive shield for neutron
  - : LiH+paraffin 15mm
  - : Cd sheet 0.6mm
  - :  $H_3BO_3+H_2O$  tank

**<u>ELE</u>**ctron <u>GA</u>mma ray <u>N</u>eutrino <u>T</u>elescope

Detector & Source
 : CaF<sub>2</sub> (Eu)
 45x45x45 mm<sup>3</sup>, 23crystals 6.7kg

### 4π active shield

: CaF<sub>2</sub>(pure):active L.G.

45x45x200 mm<sup>3</sup>, 48crystals

- **: Csl(Tl)** 65x65x250mm<sup>3</sup>, 38modules
- Passive shield for γ ray
  - : OFHC Cu 5cm
  - : Pb 10cm

### 3-3. Oto Cosmo Observatory



#### 3-4. BG free measurement @ ELE-VI 100 counts/20 keV **Energy resolution** : 3.1(FWHM) @4.27MeV 10<sup>2</sup> **Detection eff.** : 58% from simulation 10 $T_{1/2}^{0v} > 1.4 \times 10^{22} y$ 1 <sup>48</sup>Ca: 4271 16C 36 30 104000 5000 2000 3000 Energy (keV) NPA730(2004)215

# CANDLES system - 4 -

4-1. Improvement of sensitivity

ELEGANT VI (6.6g of <sup>48</sup>Ca )@Oto
 4π active shield + Largest Q<sub>ββ</sub> value

### **BG free measurement**

Increase the number of <sup>48</sup>Ca nuclei (Order of kg)
 Large volume detector 

 CANDLES

**<u>CA</u>**lcium fluoride for studies of <u>N</u>eutorino

and <u>D</u>ark matter by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer

•  $4\pi$  active shield + largest  $Q_{\beta\beta}$  value

## Huge volume detector !!

### 4-2. CANDLES system

<u>CA</u>lcium fluoride for studies of <u>N</u>eutorino and <u>D</u>ark matter by <u>L</u>ow <u>E</u>nergy <u>S</u>pectrometer

Undoped CaF<sub>2</sub> scintillator

: Long attenuation length

- Liquid scintillator
  - :  $4\pi$  active shield

Decay time of signal 900nsec : CaF<sub>2</sub>(pure)

A few 10nsec : Liq. Scinti.





### **4-4. Progress of CANDLES**

### CANDLES I

Light collection efficiency : Optimization of mixture

BG rejection : Pulse shape discrimination Liq./CaF<sub>2</sub>,  $\alpha/\gamma$ , double pulse

### CANDLES III 60crystals x 3.2kg = 191kg

Under Construction

### R&D study

- Reduction of radioactive impurities in CaF<sub>2</sub> crystal
- Enrichment <sup>48</sup>Ca

# BG rejection Pulse shape discrimination - 5 -

### 5-1. Background







 $\alpha/\gamma$  & double pulse rejection

### **5-2.** Set Up ( $\alpha/\gamma$ discrimination)



#### **5-3. Reference Pulse**





# Goal of CANDLES system - 6 -

### 6-1. Sensitivities of CANDLES

### CANDLES III ————



< mv > : 0.11 eV

- $CaF_2$ : 60 crystals x 3.2 kg 191 kg
- E-Resolution: 4%@4.27MeV
- Measurement time: 5year
- CANDLES IV
  - CaF<sub>2</sub>: 1000crystals x 3.2kg 3.2ton
  - E-Resolution: 3.5%@4.27MeV
  - Measurement time: 10year
- CANDLES V
  - Enrichment of <sup>48</sup>Ca 0.187% => 2%

or Scale up detector (40ton) & BG reduction

Measurement time: 10year

### **Summary**

**0**νββ decay

Lepton number violation Majorana absolute mass of neutrino



- BG free measurement @ ELE-VI successful
   Increase the number of <sup>48</sup>Ca nuclei CANDLES
- Performance of CANDLES system
  - Light collection efficiency : good
  - Pulse shape discrimination Liq./CaF<sub>2</sub>, double pulse, α/γ : good
- CANDLES III (Sensitivity <m<sub>n</sub>> : 0.56eV) Under Construction
  Future prospect CANDLES V ----> <m<sub>n</sub>> : 0.04eV

## Thank you for your attention !!