KASKA

13 measurement using reactor neutrino

2005年2月21日 東京都立大学 佐久間 清美

新潟県柏崎刈羽原子力発電所で 核分裂時に生成される eを利用した、 ニュートリノ振動パラメーター 13の測定

KAShiwazaki KAriwa

KamLAND,SNO: $m_{12}^{2} \sim 7.9 \times 10^{-5} eV^{2}$ $\sin^{2}2_{12}^{2} \sim 0.8$ $m_{12}^{2} \sim 0.8$ $m_{12}^{2} \sim 0.8$ $m_{12}^{2} \sim 0.8$ $m_{12}^{2} = 0.8$

Collaborators(Feb 2005)

田村詔生、谷本盛光、宮田等、中野博章、渡辺亮平、 岩渕龍也、佐々木真弓、青木勝

- 東北大学 末包文彦、坂本泰伸、土屋泰
- 東京工業大学 久世正弘、古田久敬、前田順平
- 東京都立大学 住吉孝行、南方久和、安田修、松本崇博、中川尊、佐久間清美
- 神戸大学
 原俊雄

● <u>KEK</u> 石原信弘、杉山弘晃

- 岡山大学 作田 誠
- **宮崎教育大学** 福田善之

広島工業大学

長坂康史

ICEPP Symposium@Hakuba

Outline

ニュートリノ振動

 13) 加定

 KASKA実験

 Detector
 バックグラウンド
 誤差

 バックグラウンド測定
 まとめ

13) 測定

• 残されたパラメータ 13測定:

- 加速器ニュ トリノ測定→T2K, MINOS, OPERA
- 原子炉ニュートリノ測定→DCHOOZ, Diablo Canyon, KASKA
- 加速器ニュートリノ測定(_µ→ _e)

$$P(v_{\mu} \rightarrow v_{e}) \simeq \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \Delta_{31} \mp \Delta_{31} \frac{\Delta m_{12}^{2}}{\Delta m_{23}^{2}} \sin 2\theta_{13} \sin \delta \cos \theta_{13} \sin 2\theta_{23} \sin^{2} \Delta_{31}$$

$$\sim \frac{1}{2} \sin^{2} 2\theta_{13} \left(1 \pm \frac{0.08}{\sin 2\theta_{13}} \sin \delta \right)$$

$$\textbf{NTSX-STAR}$$

$$\textbf{Unknown sin } \textbf{ICLSambiguity}$$

$$sin _{23} \textbf{O} degeneracy$$

 $2\sin^2\theta_{23} = 1 \pm \sqrt{1 - \sin^2 2\theta_{23}}$

SAKUMA

ICEPP Symposium@Hakuba

0.12 0.14

 $\sin^{0.06} \sin^2 2\theta_{13}$

0.1

0

0.02 0.04

$$P\left(\overline{v_e} \to \overline{v_e}\right) = 1 - \sin^2 2\theta_{13} \sin^2 \frac{\Delta m_{13}^2 L}{4E} + O\left(10^{-3}\right)$$

- Disappearance測定なので、CP phase ()がでてこない
- パラメータによる不確定性がほとんどない
- ・
 値段も実験期間(3年)も比較的小規模に収まる KASKA→60,000 event/3year
- 加速器ニュートリノ測定と組み合わせて 物質効果やCPの破れなど有用な物理が観測可 (sin²2 13</sub>>0.01の場合)

SAKUMA

ICEPP Symposium@Hakuba

- 原子炉の配置により、2つのNear Detector
- Far Detector
- Detectorは系統誤差を減らすためidentical
- NearとFarで信号と宇宙線レートの比率
 を同じにするように深さを設定

9

CHOOZ hep-ex/0301017v1 Prompt signal Events 300 $e^+ + e^- \rightarrow 2\gamma$ e⁺ energy $E_{prompt} = E_v - E_{th} (1.8 \text{MeV}) + 2m_e$ 250 v signal 200 - MC 150 100 Р+ 50 E_{prompt} CHOOZ hep-ex/0301017v1 n-capture Energy 500 ε>97%, 400 v signal $\delta \epsilon_{relative} < 0.5\%$ - MC 300 200 **Delayed signal** 100 $Gd+n\rightarrow Gd^* \rightarrow Gd+\gamma s$ $E_{delay} \sim \Sigma 8 MeV$ E_{delay}

cut

10

ICEPP Symposium@Hakuba

• 逆

反応

 v_{e}

SAKUMA

●[Region I] 0.1%Gd液体シンチレーター 8ton ●[Region II] 液体シンチレーター ● [Region III] バッファーオイル(発光なし) PMTガラスからの 線を防ぐ ●[Region IV] 弱い液体シンチレーター 宇宙線のveto (1ms) •Near ~ 100Hz•Far ~ 10Hz●宇宙線トラッカー Spallationの見積もり

Detector

Accidental バックグラウンド

- PMT中の放射性物質からの 線~3Hz
- 外部からの 線<1Hz
- 液体シンチレーター~1Hz
- アクリル容器~1Hz
- 中性子 << 1/min
- Accidental BG negligible

Correlatedバックグラウンド

- Correlated BG
 - 高速中性子 ~1±0.2%

土中で宇宙線が高速中性子を発生

- 1. 液シン中でrecoilされた陽子
- 2. 減速した中性子のGd捕獲
- Spallation $\sim 0.4 \pm 0.2\%$

液シン内の原子核を粉砕し、放射性核種を作る

 $\mu^{+12}C \rightarrow {}^{9}Li + X$ ${}^{9}Li \rightarrow {}^{8}Be + e^{+}(13MeV) + n , (\tau = 0.26s, Br = 48\%)$

•NearとFarの比よりCorrelated BG <0.5%

SAKUMA

ICEPP Symposium@Hakuba

Radioactive

decay

Be

μ

●Far/Nearの比の測定を行なうこと ●efficiencyの依存性の少ないカットを行なうこと →系統誤差を小さくする

Statistic Error: 60,000/3years => 0.6%

Systematic Error :	e ⁺ cut	< 0.1%
	n cut	<0.5%
	timing cut	0.2%
	LS volume	<0.5%
	v flux	0.2%
	BKG	< 0.5%
	Total	<1.0%
ICEPP Sv	mposium@Hakuba	

14

バックグラウンド測定

- 2004年10月25~29日
 柏崎刈羽原子力発電所 Near Detector建設予定地
 目的:バックグラウンド評価
 - 宇宙線
 - 線
 - 地質調査

◆中越地震(M~6.8)が10月23日に起こったが 測定に影響は無かった

Detector

- 宇宙線レート 65m/0m~2% → ほぼ予測どおり
- シンチの厚さが2cm →MIPsピーク~3.8MeV

 Correlated BGもほぼ予測どおりと期待 →simulationにより検証中

Summary

KASKA**実験**

- 費用が比較的少ない
- 3年間のrunで結果が得られる
- 加速器実験とは独立に 13が得られる
- J-PARCとの組み合わせによる重要な物理結果が期待
- 13を特定することで、KamLANDによる 12精度がよくなる

END OF TALK

Detector

Event Selection 0.7MeV < E_{prompt} < 9MeV

 $5MeV < E_{delay} < 11MeV$ $1\mu s < \Delta t < 200\mu s$

● [Region I] Gd液体シンチレーター • Gd $[Gd(CH_3(CH_2)_3CH(C_2H_5)CO_2)_3]: 0.5\%$ Palo Verdeと同様 (0.5%BG521を希釈) [Region II] 液体シンチレーター ● 1,2,4トリメチルベンゼン [C₆H₃(CH₃)₃]: 36% ● n-テトラデカン [C₁₄H₃₀] : 60% • イソパラフィン [C_nH_{2n+2}]:4% [Region III] バッファーオイル • n-テトラデカン [C₁₄H₃₀] ● [Region IV] 弱い液体シンチレーター

- Correlated 誤差はbaselineの違いによらず3つのDetectorで キャンセルされる
- Uncorrelated 誤差は baselineの標準偏差を原子炉数で割ったものの平方根がかかる h.sugiyama et al. hep-ph/0409109

$$\frac{\delta f_{\nu}}{f_{\nu}} \sim \left(\frac{\delta P^{un-corr.}}{P}\right) \times \sqrt{\frac{1}{7} \sum_{r} \left(1 - \frac{R_{r}}{\langle R \rangle}\right)^{2}} < 0.2\%$$

P=原子炉の熱出力
 P=uncorrelatedエラー(<2%)
 R_r=nearとfarのbaseline比
 R_r = $\frac{L_{r,far}^2}{L_{r,near}^2}$

