ICEPP Symposium @Hakuba Feb 21st 2005

Current status of T2K experiment

1.Introduction
2.T2K experiment
3.Near neutrino detector
4.Summary

Jun Kubota (Kyoto University)

ICEPP@Hakuba2005

Introduction

Next goal of neutrino experiments... To explore the neutrino oscillation phenomena beyond the discovery phase

Mixing parameters

3 mass state(2mass difference) Δm_{12}^2 : Solar v & Reactor experiments7~8 x 10^{-5} eV^2 Δm_{23}^2 : Atm. v & Long BaseLine experiments 2~3 x 10^{-3} eV^2

3 mixing angles & 1 CPV phase

Maki-Nakagawa-Sakata Matrix (U_{ii})

Remaining questions

• How close θ_{23} to $\pi/4$? Atmospheric neutrino measurements $\sin^2 2\theta > 0.9$ (Best fit $\sin^2 2\theta \sim 1$, $\Delta m^2 = 2 \sim 3 \times 10^{-3} eV^2$) Precise measurement of θ_{23} and Δm_{23}^2 • How large is 1st – 3rd generation mixing? Reactor experiment $\theta_{13} > 0 \text{ or } \theta_{13} = 0 ?$ $sin^2 2\theta < 0.1 \sim 0.2 @ \Delta m^2 \sim 2.5 \times 10^{-3} eV^2$) <u>Measurement of θ_{13} </u> • How large is the phase δ ? Search for the CP violation Mass Hierarchy?

- Does sterile neutrino exist?

T2K(Tokai to Kamioka) long baseline neutrino oscillation experiment

Approved in Dec.2003

Conventional v_{μ} beam 0.75MW beam (1st phase)

Baseline ~ 295km Beam energy ~ 1GeV

Will be adjusted to the oscillation maximum

	Beam power	Far detector	Physics	
1 st phase	0.75MW	Super	v_{μ} disappearance	
		Kamiokande(50kt)	v_e appearance	
			NC measurements	
2 nd phase	~4MW	Hyper	CP violation	
		Kamiokande(1Mt)	Proton decay	

T2K collaboration

 Japan KEK, ICRR, U. Tokyo, Tohoku U., Hiroshima U., Kyoto U., Kobe U., Osaka City U., Miyagi U. of Education •USA UCI, SUNY-SB, U. Rochester, U. Pennsylvania, Boston U., CSU, Duke U., Dominguez Hills, BNL, UCB/LBL, U. Hawaii, ANL, MIT, LSU, LANL, U. Washington Korea Seoul National U., Chonnam National U., Dongshin U., kangwon U., Kyungpook National U., KyuSang National U., SungKyunKwan U., Yonsei U. Poland Warsaw U. •Formed in May 2003 Spain U. Barcelona, U. Valencia 12 countries, 53 institutions Switzerland ~150 collaborators (not incl. students) U. Geneva Russia INR Italy U. Roma, U. Bari, U. Napoli, U.Padova •France **CEA** Saclay Canada TRIUMF, U. Alberta, York U., U. Toronto, U. Victoria, U. Regina China IHEP (Inst. of High Energy Phys.) •UK RAL, Imperial College London, Queen Mary Westfield College London, U. Liverpool Feb 21 2005 ICEPP@Hakuba2005

5

J-PARC overview

J-PARC=Japan Proton Accelerator Research Complex

Construction status

Apr. 2001: J-PARC Phase 1 construction was started Dec.2003: Neutrino experiment was approved!

3GeV Synchrotron (Jan 05)

In 2008, accelerator will be in operation. Start v experiment physics run in 2009!

LINAC (Nov 04)

50GeV Synchrotron (Jan 05)

Neutrino beam line

Proton beam kinetic energy 50GeV (40GeV@T=0) # of protons / pulse 3.3x10¹⁴ **Beam power** 750kW **Bunch structure** 8 bunches **Bunch length (full width) 58ns Bunch** spacing 598ns Spill width ~5µs Cycle 3.53sec Feb 21 2005

ICEPP@Hakuba200

Muon monitor @ ~140m

- First (spill-by-spill) monitoring of beam direction & intensity
 First Front Detector @ 280m
 - Neutrino energy spectrum, intensity and direction

- Study neutrino interaction (Second Front Detector @ ~2km)

- Almost same Ev spectrum as for SK

Far Detector @ 295km

- Super-Kamiokande(50kt)

Neutrino spectra at different distance

Far detector Super-Kamiokande

40m

50,000 ton water Cherenkov detector (22.5.kt fiducial volume)

> Full water 10th Dec 2002 w/ half coverage(20%)

Back to full coverage(40%) Scheduled in winter 2005

4m

41

Physics Goal at the 1st phase(5yrs)

•Precise measurement of neutrino mixing matrix v_u disappearance ($v_u \rightarrow v_x$)

Accuracy: $sin^2 2\theta_{23}$1% Δm^2_{23}a few %(< 1 x 10⁻⁴eV²)

•Discovery and measurement of non-zero θ_{13} v_e appearance $(v_{\mu} \rightarrow v_e)$

> sin²2θ₁₃.....> 0.006 <u>1st evidence of 3-flavor mixing!</u> 1st step of a CP measurement

Measurement of θ_{23} , Δm_{23}^2

Use 1 ring μ -like events @ SK (= quasi-elastic enriched sample) to reconstruct neutrino energy

Clear deficit is expected to be observed in the reconstructed v energy

 $v_{\mu} + n \rightarrow$

ν

 $\mu + p$

p

 (E_{μ}, p_{μ})

Measurement of θ_{23} , Δm_{23}^2

Sensitivities in the 1st phase

 $\delta(\Delta m_{23}^2) < 1 \ge 10^{-4} eV^2$ $\delta(\sin^2 2\theta_{23}) \sim 0.01$ $v_{e} \text{ appearance search} \\ \theta_{13} \text{ measurement} \\ P_{\mu \rightarrow e} \approx \sin^{2} \theta_{23} \cdot \sin^{2} 2\theta_{13} \cdot \sin^{2} (1.27 \Delta m_{23}^{2} L/E_{\nu}) \\ \text{Upper limit: } \sin^{2} \theta_{13} < 0.03 \sim 0.05 \ (@\Delta m^{2} = 2 \sim 3 \times 10^{-3} \text{eV}^{2}) \end{cases}$

 Signal events @ SK single ring e-like event (v_e CC quasi-elastic scattering)

v_e appearance search Expected # of background Event selection •Select 1ring e-like events

- •Apply π^0 rejection cut
- •Energy cut (around the oscillation maximum)

OA 2.5deg	ν,, CC	ν_{μ} NC			Beema	
5yrs	(oscillated)	1π ⁰	coherent	DIS	Deam v _e	
1) Generated in FV	2,897	432	71	2,410	225	
2) 1ring e-like	5.9	74	22	41	64	
3) e/π ⁰ separate	0.8	14	2.6	4.3	26	
4) 0.4GeV <e<sub>v^{rec}<1.2GeV</e<sub>	0.4	6.3	0.8	1.9	16	
Feb 21 2005 ICEPP@Hakuba2005 18						

Assuming $sin^{2}2\theta_{23}=1.0$, $\Delta m_{23}^{2}=2.7x10^{-3}eV^{2}$

Sensitivities in the 1st phase(5yrs)

Search for v_e appearance

w/ beam MC and full SK detector simulation

ICEPP@Hakuba2005

Off-axis detectors

On-axis detector

Uncertainly of energy scale δ<Ev>/<Ev>~24MeV/mrad

 $\delta(\Delta m^2)=10^{-4}eV^2/mrad$

Oscillation probability $P(\nu_{\alpha} \rightarrow \nu_{\beta \neq \alpha}) = \sin^2 2\theta \sin^2(1.27\Delta m^2)$

It's necessary to measure v beam direction w/ high accuracy and control precisely

At least 0.5mrad is needed as a measurement accuracy

Summary

The first "Super-beam" Long baseline v experiment T2K (Tokai to Kamioka) experiment was approved

- Construction was started
- •5 years to complete (JFY 2004~2008)
- •Start physics run in 2009
 - •Try to discover non-zero θ_{13} (sin²2 θ_{13} >0.006 @90%C.L.)
 - •Precision measurement of $\theta_{23} \& \Delta m_{23}^2$ (precision x 10)
 - •1st step to the CP violation in the lepton sector

Tight e/π^0 separation

Shower direction from the beam axis

 $\cos \theta_{ve}$: γ from coherent π^0 tends to have a forward peak Force to find 2nd ring and...

 $E(\gamma 2)/E(\gamma 1+\gamma 2)$: The second ring energy is larger for BG Likelihood diff. between 1-ring and 2-rings Invariant mass: Small for v_e

N-Grid detector

Event Selection [1] ≧2 hits in the scintillator. [2] No Veto Hits [1] & [2]

Feb 21 2005