Recent Results in K2K Experiment

Contents

Introduction
 K2K Experiment
 Results
 Current Status
 Summary

K. Hiraide (Kyoto Univ.) ICEPP Symposium 11 February 21, 2005

1. Introduction

K2K: <u>K</u>EK to <u>K</u>amioka

Expected spectrum at SK

Goals:

- \bullet Confirmation of ν_{μ} disappearance
- Discovery of v_e appearance

JAPAN: High Energy Accelerator Research Organization (KEK) / Institute for Cosmic Ray Research (ICRR), Univ. of Tokyo / Kobe University / Kyoto University / Niigata University / Okayama University / Tokyo University of Science / Tohoku University

KOREA: Chonnam National University / Dongshin University / Korea University / Seoul National University U.S.A.: Boston University / University of California, Irvine / University of Hawaii, Manoa / Massachusetts Institute of Technology / State University of New York at Stony Brook / University of Washington at Seattle

POLAND: Warsaw University / Solton Institute

Since 2002 JAPAN: Hiroshima University / Osaka University CANADA: TRIUMF / University of British Columbia Italy: Rome Frace: Saclay Spain: Barcelona / Valencia Switzerland: Geneva RUSSIA: INR-Moscow

Comparison between Far & Near measurements

Neutrino energy reconstruction

<u>Charged Current Quasi Elastic (CC-QE) interaction</u>

 $v_{\mu} + n \rightarrow \mu^{-} + p$

$$\mathbf{v}$$
 (p_{μ}, θ_{μ})

$$E_{v}^{rec} = \frac{m_{N}E_{\mu} - m_{\mu}^{2}/2}{m_{N} - E_{\mu} + p_{\mu}\cos\theta_{\mu}}$$

2.1 Neutrino Beamline

2.2 Near Detectors

 1kt Water Cherenkov Detector (1KT) ●Scintillating-fiber/Water sandwich Detector (SciFi) → measure nonQE/QE •Lead Glass calorimeter (LG) before 2002 Scintillator Bar Detector (SciBar) after 2002 Muon Range Detector (MRD)

 \rightarrow similar to SK

- \rightarrow measure v_e/v_u ratio
- \rightarrow study v interaction

2.3 New Near Detector: SciBar!

Full active, fine segmented Scintillator tracker

- strip size: 2.5x1.3x300 cm³
- ~15,000 channels

Features

Detection of short tracks
 p / π separation using dE/dx
 High efficiency for CC-QE

- Measure neutrino energy spectrum
- Study neutrino interaction

2.4 SciBar: spectrum measurement

8

2.4 SciBar: spectrum measurement

Flux measurements (using all ND)

χ^2 =638.1 for 609 *d.o.f*

- $\Phi 1 (Ev < 500) = 0.78 \pm 0.36$
- $\Phi 2$ (500 ≤ Ev < 750) = 1.01 ± 0.09
- Φ3 (750≤ Ev <1000) = 1.12 ± 0.07
- Φ4 (1500≤ Ev <2000) = 0.90 ± 0.04
- Φ 5 (2000 \leq Ev <2500) = 1.07 \pm 0.06
- Φ5 (2500≤ Ev <3000) = 1.33 ± 0.17</p>
- $\Phi 6 (3000 \le E_V)$) = 1.04 ± 0.18
 - nQE/QE = 1.02 ± 0.10

The nQE/QE error of 10% is assigned based on the variation by the fit condition.

- θ>10°(20 °) cut: nQE/QE=0.95 ±0.04
- standard(CC-1π low q² corr.): nQE/QE=1.02 ±0.03
- No coherent: π =nQE/QE=1.06 ±0.03

Accumulated POT (Protons On Target)

3.1 Results $\sim v_{\mu}$ disappearance~

DATA set: K2K-I + K2K-II ('99 Jun.~'04 Feb.) 8.9x10¹⁹ POT

K2K-I+II	DATA	MC
FCFV,	107	150.9
1ring	67	94.0
μ-like For	Evrec 57	85.4
e-like	10	8.6
Multi Ring	40	56.9

3.1 Results $\sim v_{\mu}$ disappearance~

Number of neutrino events

107 events \longrightarrow Expected: 151_{-10}^{+12} events

Neutrino energy distribution

Best fit within physical region $\Delta m^2 = 2.8 \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1$

Confirm neutrino oscillation with

• a deficit of v_{μ} events and

• the distortion of the E_v spectrum.

14

3.1 Results $\sim v_{\mu}$ disappearance~

• Allowed region

90% C.L. $\Delta m^2 = (1.9 \sim 3.6) \times 10^{-3} \text{ eV}^2$ $\sin^2 2\theta = 1$

Null oscillation probability 0.0050% (4.0σ)

arXiv:hep-ex/0411038 Accepted for publication in PRL

3.2 Results ~v_e appearance~

DATA set: K2K-I ('99 Jun. ~ '01 July) 4.8x10¹⁹ POT

	DATA	MC			
		$ u_{\mu}$ w/o osc.	Beam v_e	ν_e from osc.	
FCFV	56	80	0.8	28	
Single ring	32	50	0.5	20	
PID (<i>e</i> -like)	1	2.9	0.4	18	
E _{vis} >100MeV	1	2.6	0.4	18	
w/o decay-e		2.0	0.4	16	

Expected background 2.4 ± 0.6 events

3.2 Results ~v_e appearance~

4. Current Status

i04 Oct.K2K has resumed.

However...

□ '04 Nov. 6th

1st Horn broke down!

u '04 Dec.

K2K decided to finish the run.

5. Summary

- K2K has confirmed v_{μ} disappearance at 4.0 σ with
 - Deficit of v_{μ} events and
 - Distortion of the Ev spectrum
- As for v_e appearance mode, there is one candidate event, but consistent with background.
- K2K finished the run due to horn trouble.
- However, physics analyses are going on.

Backup slides

NEUT: K2K Neutrino interaction MC

- CC quasi elastic (CCQE)
 - Smith and Moniz with $M_A=1.1GeV$
- CC (resonance) single π (CC-1 π)
 - Rein and Sehgal's with M_A=1.1GeV
- DIS
 - GRV94 + JETSET with Bodek and Yang correction.
- CC coherent π
 - Rein&Sehgal with the cross section rescale by J. Marteau
- NC
- 21 + Nuclear Effects

Muon monitor

Monitoring **Intensity** and **Direction** on **spill-by-spill basis** Behind beam dump

 \rightarrow sensitive to only high energy muons (>5.5GeV)

A hint of K2K forward μ deficit.

K2K observed forward μ deficit.

- A source is non-QE events.
- For CC-1 π ,
 - Suppression of ~q²/0.1[GeV²] at q²<0.1[GeV²] may exist.
- For CC-coherent π ,
 - The coherent π may not exist.

Oscillation analysis is insensitive to the choice.

Near Detectors combined measurements

(p_{μ}, θ_{μ}) for 1track, 2trackQE and 2track nQE samples $\rightarrow \Phi(Ev)$, nQE/QE ratio

- Fitting parameters
 DE/DE r
 - $\Phi(E_v)$, nQE/QE ratio
 - Detector uncertainties on the energy scale and the track counting efficiency.
 - The change of track counting efficiency by nuclear effect uncertainties; proton re-scattering and π interactions in a nucleus ...

• Strategy

24

- ① Measure $Φ(E_ν)$ in the more relevant region of $θ_μ ≥ 20°$ for 1KT and $θ_μ ≥ 10°$ for SciFi and SciBar.
- ② Apply a low q^2 correction factor to the CC-1 π model (or coherent π).
- 3 Measure nQE/QE ratio for the entire θ_{μ} range.

Bunch structure of SK events

SK event timing (1bin=125/2 (nsec))

v_e candidate event

26

SciBar event gallery

K2K Fine-Grained Detector (Side View)

27