Evidence for Neutrino Oscillation in KamLAND (KamLANDにおけるニュートリノ振動の証拠)

ICEPP Symposium 2005.2.20

Itaru Shimizu (清水格)

- 1. Motivation
- 2. KamLAND Detector and Neutrino Event Selection
- 3. Significance of Neutrino Oscillation
- 4. 3 Flavor Oscillation Analysis

Motivation

Primary goal of KamLAND

Search for the neutrino oscillation of $\overline{v_e}$ from distant reactors

KamLAND Experiment

high L/E resolution to see oscillatory shape

KamLAND Detector and Neutrino Event Selection

KamLAND Detector

Kamioka Liquid Scintillator Anti-Neutrino Detector

Neutrino Event Selection

primary cuts fiducial cut + µspallation cut •0.5 $\mu sec < \Delta T < 1000 \ \mu sec$ • R_{prompt}, R_{delayed}<5.5m • $\Delta \mathbf{R} < 2\mathbf{m}$ • 2 sec veto after showering μ • $1.8 \text{ MeV} < E_{\text{delayed}} < 2.6 \text{ MeV}$ • 2 sec veto after non-showering μ • 2.6 MeV < E _{prompt} < 8.5 MeV in 3m cylinder efficiency 89.8% deadtime 9.7% prompt delayed z (m) E 10 15 30 15 50 $x^{2}+y^{2}(m^{2})$ $x^{2}+y^{2}(m^{2})$

Systematic Error

Systematic	%
Fiducial volume	4.7
Energy threshold	2.3
Efficiency of cuts	1.6
Livetime	0.06
Reactor power	2.1
Fuel composition	1.0
\overline{v}_{e} spectra	2.5
Cross section	0.2
Total	6.5

Significance of Neutrino Oscillation

Result of Neutrino Disappearance

analyzed data March 9, 2002 ~ January 11, 2004 (livetime : 515.1 days, fiducial mass : 543.3 ton, E_{prompt}>2.6MeV) 33% increase (R 5m \rightarrow 5.5m) 4.7x the statistics of first result background 2.69 ± Accidental no osc. expected 365 ± 24 0.02 observed 258 ⁸He/⁹Li 4.8 ± 0.9 background 17.8 ± 7.3 μ induced n < 0.89 10.3 ± 7.1 (α, n) (Observed - Background) / Expected 0.658 ± 0.044 (stat) ± 0.047 (syst) inconsistent with no oscillation neutrino propagation

significance of disappearance is 99.998%

Null Oscillation Probability

V. D. Barger et al., Phys. Rev. Lett. 82, 2640 (1999) E. Lisi et al, Phys. Rev. Lett. 85, 1166 (2000)

V. D. Barger et al., Phys. Rev. Lett. 82, 2640 (1999) E. Lisi et al, Phys. Rev. Lett. 85, 1166 (2000)

Best-fit to Oscillation

Rate + Shape Analysis

3 Flavor Oscillation Analysis

(from my Ph.D. thesis, not KamLAND official)

Oscillation Experiments

- Natural neutrino
- Solar neutrino $v_e \rightarrow v_x$ Homestake, SAGE, GALLEX, GNO, SNO, Super-Kamiokande
- Atmospheric neutrino $\nu_{\mu}(\overline{\nu_{\mu}}) \rightarrow \nu_{x}(\overline{\nu_{x}})$

Kamiokande, IMB, Super-Kamiokande, Soudan2 ...

- Man-made neutrino
- Accelerator neutrino

K2K, LSND, KARMEN, MiniBooNE ...

• Reactor neutrino

Bugey, CHOOZ, Palo Verde, KamLAND ...

K2K and KamLAND show neutrino disappearatice

KamLAND (3-flavor)

Solar

Global Analysis

 $\Delta m_{21}^2, \theta_{12}, \theta_{13}$

 $\Delta m_{31}^2, \theta_{23}, \theta_{13}$

solar neutrino

oscillation parameter

 θ_{13}

CHOOZ

neutrino oscillation experiment

solar, KamLAND

atmospheric, K2K

global analysis

$$\chi^{2}_{global} = \chi^{2}_{solar+KamLAND} \left(\Delta m^{2}_{21}, \theta_{12}, \theta_{13} \right) + \chi^{2}_{CHOOZ+Atmospheric+K2K} \left(\Delta m^{2}_{31}, \theta_{23}, \theta_{13} \right)$$
$$= \chi^{2}_{solar+KamLAND} \left(\Delta m^{2}_{21}, \theta_{12}, \theta_{13} \right) + \chi^{2}_{CHOOZ+Atmospheric+K2K|marg} \left(\theta_{13} \right)$$

 θ_{13} is strongly constrained by atmospheric, K2K and CHOOZ₂₂

LMA II and LMA 0 are excluded at >3 σ and >4 σ^2 C.L.

Summary

- Result of KamLAND for the 766.3 tonyear data set are presented.
- The significance of $\overline{\nu}_e$ shape distortion is 99.8% C.L.
- The oscillatory shape of $\overline{v_e}$ is observed in KamLAND for the first time.
- Larger θ_{13} is disfavored from the oscillatory data in KamLAND.

• Global analysis (solar + KamLAND + atmospheric + K2K + CHOOZ) gives

$$\begin{split} \Delta m_{21}{}^2 &= 7.9 \times 10^{-5} \text{ eV}^2 \\ &(7.3 \sim 8.7 \times 10^{-5} \text{ eV}^2 \text{ at } 95\% \text{ C.L.}) \\ \theta_{12} &= 32^{\circ} \\ &(29^{\circ} \sim 36^{\circ} \text{ at } 95\% \text{ C.L.}) \\ \theta_{13} &< 11^{\circ} (95\% \text{ C.L.}) \end{split}$$

3-flavor oscillation effect is very small for solar and KamLAND experiment₂₆

Web Page for data release

http://www.awa.tohoku.ac.jp/KamLAND/datarelease/2ndresult.html

□ Event List
□ Background Spectrum
□ Number of Fissions
□ χ² Map
□ Other Relevant Constants

Please make use of KamLAND data!