The Uniformity measurement of the Hamamatsu 10 inch **PMT for the IceCube** Experiment Hiroko Miyamoto

Dept. of Physics Chiba University

Our Work

Chiba university group is working for both software and hardware part.
Software – develop the Java-based propagator of high energy cosmic neutrino in the earth and the ice.
Hardware – uniformity measurement of the PMT, gain measurement @-32°C, absolute QE, etc.

_	The	Resi	ult o	f the	e Gai	in M	easu	ırem	ent	@ -3	2°C	
Model turn	2000∨	Error	1900V	Error	1800V	Error	1700V	Error	1600V	Error	1500V	Error
SF0001	4.05E+07	3.03E+06	3.03E+07	2.26E+06								
SF0004	5.05E+07	3.78E+06										
SF0010	1.21E+08	9.01E+06	8.25E+07	6.17E+06	5.80E+07	4.34E+06	4.22E+07	3.16E+06	2.00E+07	1.49E+06		
SF0016	1.24E+08	9.28E+06	8.62E+07	6.44E+06	5.92E+07	4.43E+06	4.24E+07	3.17E+06	2.11E+07	1.58E+06		
SF0023	3.83E+07	3.85E+05	2.90E+07	2.35E+05	1.71E+07	1.08E+05	1.15E+07	1.76E+05				
SF0030	4.58E+07	3.42E+06	3.21E+07	2.40E+06								
SF0037	7.56E+07	5.65E+06	5.46E+07	4.08E+06	3.97E+07	2.97E+06	2.67E+07	2.00E+06	1.32E+07	9.85E+05		
SF0043	1.11E+08	8.28E+06	7.77E+07	5.81E+06	5.53E+07	4.13E+06	3.88E+07	2.90E+06	1.98E+07	1.48E+06		
SF0050	3.79E+08	1.55E+06	2.55E+08	1.11E+06	1.69E+08	7.70E+05	1.09E+08	5.22E+05	6.78E+07	3.87E+05	4.64E+07	6.79E+06
SF0056	1.91E+08	1.43E+07	1.25E+08	9.34E+06	8.07E+07	6.04E+06	5.17E+07	3.87E+06				
SF0067	2.63E+08	1.97E+07	1.81E+08	1.36E+07	1.20E+08	8.98E+06	7.85E+07	5.87E+06	5.16E+07	3.86E+06	3.45E+07	2.61E+06
SF0070	2.14E+08	1.60E+07	1.46E+08	1.09E+07	1.02E+08	7.66E+06	6.67E+07	4.98E+06	4.64E+07	3.47E+06	2.82E+07	2.18E+06
SF0080	1.58E+08	1.18E+07	1.07E+08	7.99E+06	7.24E+07	5.41E+06	4.74E+07	3.54E+06	3.22E+07	2.41E+06	1.59E+07	1.54E+06
SF0086	2.91E+08	2.17E+07	1.93E+08	1.44E+07	1.27E+08	9.51E+06	8.16E+07	6.10E+06	5.27E+07	3.94E+06	3.28E+07	2.52E+06
See more results : http://www-ppl.s.chiba-u.jp/research/IceCube/pmt/												
screening/FY2003/index.html												

lceCube

The Measurement (of the first 14PMTs)

 The Light Source – UV (380 nm) Nichiya LED (220Ω driving) Collimated to less than 1mm diameter on the surface of PMT.
 Flashing at the every 1.3mm point on the R-guide.
 The Pulse is formed by the Agrilent Func. Generator (100 risec)

30photoelectrons/shots, corresponding the average of

3000 shots. [204 points/slice]

■PMT – Hamamatsu R7081 " –02 tube.

■HV – 2000 V, 5E7 ~ 5E8 Gain

■Dark current ~ 404 μA @ 2000V (~363 μA @ 1800V)

Noise Rate ~100 Hz ~2.5kHz with 50 mV threshold @ room temperature.

Table 2 : Possible Error

Possible Error

▶Posittion of LED (stepping motor) : Δ s	≪ ±0.1n
►Center Position : △c	< ±0.2 r
▶PMT Alignment : <i>P</i>	≤ ±5.0 r
►PMT Radius : ∆r	$= \pm 5.0 r$
►Translation from Step Number to Length on Cathode depends on the PMT Radius $: \Delta I_o$	$\simeq \pm 2.53$
► Translation from Step Number to Length on Cathode depends on the PMT Alignment : $\Delta I_{\Delta r}$	≃ ±4.02
►Total Translation from Step Number to Length on Cathode : $\Delta I_{total} \simeq sum(\Delta I_{\rho}^2 + \Delta I_{\Delta r}^2)$	≃ ±4.8 r
The total length on cathode : 26.6 cm	

nm

mm

mm

mm

mm

mm

mm

Calibration for data analysis
Effect of the geomagnetic field
Gain dependence
PMT by PMT difference

Results

of crack of Magnetic Shield.

Result 1: The effect of the geomagnetic field

Compare the average of the effect of B shield.

Summary 1 : the effect of geomagnetic field and B shield The effect of the geomagnetic field can be seen at ~10% level. B shield reduces the effect of geomagnetic field, ~5% still remains.

Result 2: Gain dependence 2000V vs 1800V

Summary 2: Gain dependence

The gain difference of the efficiency is at 5% level, which is not significant except around the edge.

Result 3: PMT by PMT difference

Summary 3 : PMT by PMT difference

The difference of the collection efficiency from a PMT to PMT shows the variance by 10% at maximum in the average, but, point to point difference reach 20% level.

A single PMT cannot represent all PMTs.

Discussion:

2 dimensional view of the cathode surface

Executive Summary

Completed the 2D survey data for IceCube detector MC implementation.
Geomagnetic filed effects at ~5% level.
Gain vs Collection efficiency is not significant, less than ~5%.
PMT by PMT difference is remarkable which reach ~20% level.

Outlook Absolute Quantum Efficiency : PMT/DOM Gain Scanning Wave Form data taking Angular Response DOM simulation

Absolute QE measurement

Now, we start developing new scattering box.

Now, we start developing new scattering box.
 Easy to change PMTs → Useful to calibrate many PMTs

To exchange gas, we will use vacuum pump

 \rightarrow We can easily control the gas quality.

