KASKA (微) The Reactor θ_{13} Project in Japan

F.Suekane

RCNS, Tohoku Univ. Japan suekane@awa.tohoku.ac.jp

10th ICEPP Symposium @Hakuba, 2004.2.17

The KASKA Project Members

<u>Neutrino Experiment at</u> <u>*Kas*hiwazaki-*Ka*riwa Nuclear Power Plant</u>

Niigata University H.Miyata , N.Tamura, M.Tanimoto and R.Watanabe

> Rikkyo University Y. Sakamoto

<u>Tohoku University</u> K.Inoue, F.Suekane

Tokyo Institute of Technology M.Kuze

<u>Tokyo Metropolitan University</u> H.Minakata, H.Sugiyama, T.Sumiyoshi and O.Yasuda

Contents

Status of Neutrino Study Importance of θ_{13} measurements Reactor θ_{13} measurements Complementarity to JPARC How to Improve the sensitivity from CHOOZ **Detector Description** Systematics and Background **Expected Sensitivity** Possible Schedule World Activities Summary

Neutrino Mixings Maki-Nakagawa-Sakata Matrix

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{1} \end{pmatrix} \\ \begin{pmatrix} \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

 v_e, v_μ, v_τ : flavor eigenstates. v_1, v_2, v_3 : mass eigenstates of $m = m_1, m_2, m_3$.

c.f. KM Matrix
$$\begin{pmatrix} d' \\ s' \\ b' \end{pmatrix} = \begin{pmatrix} V_{ud} & U_{us} & U_{ub} \end{pmatrix} \begin{pmatrix} d \\ U_{cd} & U_{cs} & U_{cb} \\ U_{td} & U_{ts} & U_{tb} \end{pmatrix} \begin{pmatrix} s \\ b \end{pmatrix}$$

Neutrino Oscillation

If flavor eigen states and mass eigen states mix,

$$\begin{pmatrix} v_e \\ v_\mu \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} v_1 \\ v_2 \end{pmatrix}$$

The v_e state at t=0,

$$\phi(0) = v_e = \cos\theta |v_1\rangle + \sin\theta |v_2\rangle$$

Becomes, after time *t*,

$$\phi(t) = \cos\theta |v_1\rangle e^{-iE_1t} + \sin\theta |v_2\rangle e^{-iE_2t}$$

$$= \left(\cos^2 \theta e^{-iE_1 t} + \sin^2 \theta e^{-iE_2 t}\right) v_e \rangle + \sin \theta \cos \theta \left(e^{-iE_2 t} - e^{-iE_1 t}\right) v_\mu \rangle$$

(a little bit cheated)

Then the survival probability after traveling L is, $\int_{E}^{\infty} -E \int_{E}^{\infty} dt$

$$P_{\nu_e \to \nu_e} = \left| \left\langle \nu_e \left| \phi(t) \right\rangle \right|^2 = 1 - \sin^2 2\theta \sin^2 \frac{(E_2 - E_1)t}{2}$$
$$\rightarrow 1 - \sin^2 2\theta \sin^2 \frac{\Delta m^2 L}{4E_{\nu}}$$

 $\Rightarrow \Delta m^2, \theta$ Measurement of Neutrino Oscillation

Currently Known MNS Matrix

Magnitudes of the MNS matrix elements have been roughly determined.

$$|U_{MNS}| \sim \begin{pmatrix} 0.7 & 0.7 & < 0.2 \\ 0.5 & 0.5 & 0.7 \\ 0.5 & 0.5 & 0.7 \end{pmatrix} \frac{\sin \theta_{13} e^{i\delta_l}}{\delta_l}$$

$$\sin \theta_{13} < 0.2 ,$$

$$\delta_l: \text{ totally unknown}$$

The next important step is to measure finite θ_{13} value or to set stringent upper limit.

(δ_{l} measurement takes some more time)

Importance of θ_{13} measurement-I

- It is an elementary parameter.
- It is small compared to other mixing parameters. $\sin^2 2\theta_{13} < 0.2, \ \sin^2 2\theta_{12} \sim 1, \ \sin^2 2\theta_{23} \sim 1$

 $\Rightarrow \theta_{13}$ value may play a key role when building the unified theory.

Importance of θ_{13} measurement-II

 δ_1 detectability

 θ_{13} controls δ_1 detectability in future experiments and it provides a guideline when designing such experiments which cost \$B.

$$A_{CP} = \frac{P(\nu_{\mu} \to \nu_{e}) - P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}{P(\nu_{\mu} \to \nu_{e}) + P(\overline{\nu}_{\mu} \to \overline{\nu}_{e})}$$
$$\approx \frac{\Delta m_{12}^{2}}{\Delta m_{13}^{2}} \frac{\sin 2\theta_{12}}{\sin \theta_{13}} \sin \delta_{l} \sim \frac{0.04}{\sin \theta_{13}} \sin \delta_{l}$$

Too large $\theta_{13} =>$ small asymmetry Too small $\theta_{13} =>$ small statistics

Importance of θ_{13} measurement-III

Improvement of KamLAND θ_{12} Accuracy

Precise θ_{13} to measurement improves θ_{12} accuracy by KamLAND because KamLAND measurement is actually

$$P_{KL}(\overline{\nu}_e \to \overline{\nu}_{x\neq e}) = \cos^4 \theta_{13} \times \left(1 - \sin^2 2\theta_{12} \sin^2 \frac{\Delta m_{12}^2 L}{4E}\right)$$

$$\Rightarrow \sin^2 2\theta_{12} \sim \sin^2 2\theta_{KL} - 0.8\sin^2 2\theta_{13}$$

 $\sin^2 2\theta_{13} < 0.2(90\% CL) \rightarrow \delta \sin^2 2\theta_{12} \sim 0.1$ Now $\delta \sin^2 2\theta_{13} = 0.02(90\% CL) \rightarrow \delta \sin^2 2\theta_{12} \sim 0.01$

 $(\delta \sin^2 2\theta_{KL} \sim 0.1 \text{ in the future})$

How to measure θ_{13} by reactor neutrinos

Reactor Neutrino

Neutrino Spectra

~ $6 \times 10^{20} \overline{v}_e / s / reactor$

 $\sigma_{flux} \sim 2\%$

The KASKA Experiment

Baseline=1.3~1.8km Target Mass~8ton Overburden=350~450mwe Event rate=100~50/day

Protection Ceiling

Calibration Device

γ catcher scintillator

Accelerator θ_{13} Measurement (J-PARC)

$$P(\nu_{\mu} \rightarrow \nu_{e}) \sim \frac{1}{2} \sin^{2} 2\theta_{13}$$

Sensitivity: $\sin^2 2\theta_{13} > 0.006 \ @\Delta m^2 = 3 \times 10^{-3} eV$ However,

Ambiguity in $\sin^2 2\theta_{13}$ Determination-I $P(\nu_{\mu} \rightarrow \nu_{e}) = \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} - \frac{\pi}{2} \frac{\Delta m_{12}^{2} \sin 2\theta_{12}}{\Delta m_{23}^{2}} \sin 2\theta_{13} \sin 2\theta_{23} \sin \delta$ $\sim \frac{1}{2}\sin^2 2\theta_{13} \left(1 \pm \frac{0.08}{\sin 2\theta_{13}} \sin \delta\right)$ $\sin\delta$ ambiguity Ĩ 0.07 0.06 $P(v_{\mu} \rightarrow v_{e})$ 0.05 0.04 0.03 0.02 0.01 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0 $\sin^2 2\theta_{13}$

in δ

Ambiguity in $\sin^2 2\theta_{13}$ Determination-II

Complementarity of Reactor-Accelerator Meas.

Reactor Measurement= Pure $\sin^2 2\theta_{13}$ measurement * Answer to Reactor-Accelerator combination θ_{23} degeneracy => <u>a lot of physics potential</u>

Solving Potential of θ_{23} degeneracy

H.Minakata, et. al. hep-ph/0211111

Detection Potential of non-0 δ_l

(modified from H.Minakata's presentation)

... And New Physics

 $P(v_{\mu} \rightarrow v_e)$ and $P(v_e \rightarrow v_e)$ are related based on the extended standard model.

CHOOZ Facts

2 near + 1 far detectors

KASKA1.3 if $\Delta m^2 \sim 2.5 * 10^{-3} eV^2$

KASKA1.8 if $\Delta m^2 \sim 2.0 \times 10^{-3} eV^2$

Acrylic Vessel

 $\times 1.6 = KASKA$

CHOOZ Vessel

FIG. 6. Effect of aging on Gd loaded scintillator. Top: ²²⁸Th Compton edge position at seven different longitudinal locations along a typical cell. The two curves are from calibrations taken a year apart. The curves are normalized at the location nearest to the PMT. Bottom: Effective attenuation lengths for all 66 cells from the two calibrations.

PaloVerde Hep-ex/0003022

Stability of Gd Loaded Liquid Scintialltor

PaloVerde Type: gadolinium 2-ethylhexanoate $Gd(CH_3(CH_2)_3CH(C_2H_5)CO_2)_3-xH_2O$ (Note CHOOZ LS = $Gd(NO_3)_3$)

 $\Delta \lambda = -0.4 m / year$

OK for 2~3 years

(R&D of better Gd-LS will take place)

Reduce this BKG significantly

Why we believe systematic error can be <1%

e⁺ signal selection

CHOOZ hep-ex/0301017v1

Why we believe systematic error can be <1%

n signal selection

(2) $E_{delayed} > 4MeV$

CHOOZ hep-ex/0301017v1

 $\epsilon > 97\%,$ $\delta \epsilon_{relative} < 0.5\%$

Why we believe systematic error can be <1%

Timing Correlation Cut

(3) $2\mu s < \Delta t_{prompt-delayed} < 500 \mu s$

Cut

Why we believe systematic error can be <1%

There is no fiducial cut.

Main Uncertainty <= Relative Mass Difference of Gd-LS Volume measurement => <0.5%

Uncertainties of Neutrino Flux

- (1) The correlated error cancels out regardless the baseline difference.
- (2) The uncorrelated error reduces to the factor of the standard deviation of the squared baseline difference ratio.

$$\frac{\delta f_{\nu}}{f_{\nu}} \sim \left(\frac{\delta P^{un-corr.}}{P}\right) \times \sqrt{\frac{1}{7} \sum_{r} \left(1 - \frac{R_{r}}{\langle R \rangle}\right)^{2}} < 0.2\%$$

P : the reactor operating power and $\delta P^{\text{un-corr}}$ is un-correlated error of *P* (<2%).

 R_r : the ratio of squared baseline between reactor and

near/far detectors.

$$R_r = \frac{L_{r,far}^2}{L_{r,near}^2}$$

BackGround-I

Accidental BKG

(E>0.7MeV)

Soil:	<1Hz	with >100cm oil+15cmFe
PMT:	~5Hz	with 80cm shield
Gd-LS	~1Hz	(CHOOZ Gd)
Acrylic	~1Hz	

Total <10Hz $(f_n <2*10^{-3}Hz)$

Accidental BKG<1%

& can precisely estimated by shifting coincidence window.

BackGround-II

Fast Neutron

BackGround-III

Spallation

 $\mu^{+12}C \rightarrow {}^{9}Li + X$ ${}^{9}Li \rightarrow {}^{8}Be + \beta(13MeV) + n$, ($\tau = 0.26s$, Br=48%)

KamLAND Data O.Tajima Thesis Estimation can be done by using event rate at 8MeV<E<11MeV & dt-dx distribution to the last muon.

> Error of estimation 50% ↓

Spallation BKG ~ $(0.4 \pm 0.2)\%$

(This BKG was too small to be seen by CHOOZ)

Errors

Statistic Error: 1.3km ==> 0.5%/2years 1.8km ==> 0.6%/3years

Systematic Error:Detector Associated <1%</th>Flux Associated~0.2%

Total <1%

Errors and Expected Sensitivity

σ_{sys} <1% (CHOOZ 2.7%) σ_{stat}~0.5% (CHOOZ 2.8%)

5~10 times better sensitivity than CHOOZ & Comparable to Accelerator θ_{13} sensitivity.

Errors and Expected Sensitivity

σ_{sys} <1% (CHOOZ 2.7%) σ_{stat}~0.5% (CHOOZ 2.8%)

5~10 times better sensitivity than CHOOZ & Comparable to Accelerator θ_{13} sensitivity.

Possible Extension??

(1) KASKA-II: 50ton @ Optimized Baseline to Look for non-0 δ_l with J-PARC??

(2) KASKA as a front detector for optimized θ_{12} detector??

Oscillation Max~70km

KASKA=front detector +KamLAND Scale Detector in Sado Gold Mine

 $\Rightarrow \delta \sin^2 2\theta_{12} < 0.04 (1\sigma)$

Status of the Project

- (1) Conceptual design of the experiment is almost complete. Asking for detector R&D money to some funding agencies.
- (2) Negotiation with Electric Company for site use has been very successful. Briefing to the local government was also successful.
- (4) We will host the Next International Workshop on the Reactor θ_{13} Experiment at <u>Niigata</u> in <u>March 20-22, 2004</u>. http://www.hep.sc.niigata-u.ac.jp/~neutrino/workshop/

Workshop Poster

Dedicated to Reactor θ_{13}

Kashiwazaki-Kariwa NPP Tour Takes Place.

Interested participants are welcome.

3rd Workshop on Future Low-Energy Neutrino Experiments

Date: March 20(Sat)-22(Mon), 2004 Place: Toki-Messe, Niigata, Japan

Reactor

International Program Committee: F. von Feilitzsch (Tech. Univ. Munich) S. Freedman (LBNL, U.C. Berkeley) M. Geodman (ANL) T. Lasserre (Saclay) M. Lindner (Tech. Univ. Munich) L. Mikaelyan (Kurchatov Institute) H. Minakata (Tokyo Metro. Univ.) S. Schoenert (MPI, Heidelberg) M. Shaevitz (Columbia Univ.) F. Suekane (Tohoku Univ.) Organizing Committee: M. Kuze (Tokyo Inst. Tech.) H. Minakata (Tokyo Metro. Univ.) F. Suekane (Toboku Univ. ;Chair) T. Sumiyoshi (Tokyo Metro, Univ.) N. Tamura (Niigata Univ.) M. Tanimoto (Niigata Univ.) O. Yasuda (Tokyo Metro, Univ.) Local Organizing Committee: T. Kawasaki (Niigata Univ.) H. Miyata (Niigata Univ.) H. Nakano (Niigata Univ.) Y. Sakamoto (Rikkyo Univ.) N. Tamura (Niigata Univ. Co-chair) M. Tanimoto (Niigata Univ.;Co-chair)

http://www.hep.sc.niigata-u.ac.jp/~neutrino/workshop/ws04.html

Possible Schedule (my hope)

2002: KASKA Group was formed
2003: Conceptual Design Investigation of Site Availability
2004: Detector R&D
2005: Detector R&D
2006: Start Construction
2007: Construction Continues
2008: Start Data Taking
2009: Initial Result
2010:
2011, or 2012: Final Result

World Activities

A New Nuclear Reactor v Experiment to Measure 013 January 2004

International Reactor 013 Working Group

White Paper (Jan. '04) p167

(http://www.hep.anl.gov/minos/reactor13/white.html)

International Reactor θ_{13} Working Group:

125 people, 40 Institutions, from Japan, USA, Europe, Russia, China, Brazil

Double CHOOZ (French)

P=8.4GW, L=1.1km, M=20ton

Kr2Det (Russia)

1000 m

115 m

Target: 46 t Rate: 4200/day S:B >>1

P=1.6GW, L=1km, M=50ton

Buffer light guid (mineral oil)

transparent film

- Veto zone

Diablo Canyon (USA)

P=6.2GW, L=0.9~2, M=50~100t

by K.Heeger

Angra dos Reis, Brazil

Reactor

- Primary 4.1 GW reactor
- Secondary 1.5 GW reactor
 (mostly off, may be decommisioned)

Far Detector

- 1.3 km baseline
- 200-250 m granite overburden (600-700mwe)

Near Detector

- 300-350 m baseline
- 20m granite overburden (~60 mwe)

Ref: D. Reyna, ANL theta13 white paper

by K.Heeger

Summary

- (1) Reactor measurement of $\sin^2 2\theta_{13}$ is very important because;
- * It is pure $sin^2 2\theta_{13}$ measurement.
- * It is complimentary to accelerator experiments.

And there are many such project in the world.

(2) By using the most powerful nuclear power plant and 3 identical detectors, $\sin^2 2\theta_{13}$ sensitivity of ~0.02 (90%CL) is possible in 2~3 years operation, which is 5~10 times better than the CHOOZ limit.

(3) The KASKA project is realistic.

- * KamLAND+CHOOZ+PaloVerde technologies are enough.
- * The cost is not high if compared with accelerator based experiments.
- * It can go quickly once started and can catch up with accelerator experiment.

(4) We are lacking man-power.

Serious collaborators are welcome.