A study of J/ decay using the **BES-II** detector 過程の研究) (J/

Masakazu Kurata University of Tokyo (The BES collaboration)

Motivation

• To measure Branching fraction:

Br(J/) This measurement supersedes the current world average!

• To observe direct CP violation: comes from CP violating part of the decay amplitude

Method of calculating CP-odd observable Decay mode: J/ The decay amplitude *M*: $\mathcal{M}(J/\psi \to \Lambda \overline{\Lambda}) = \epsilon^{\mu} \overline{u}_{\Lambda}(p_1) [\gamma_{\mu}(a + b\gamma_5) + (p_{1i} - p_{2i})(c + id\gamma_5)] v_{\overline{\Lambda}}(p_2),$ (1)

a,b,c,d : complex parameter

 $\mu = (0, \overrightarrow{})$: a polarization vector of J/

The decay matrix R_{ii} :

 $R_{ij} = \overline{u}_{\Lambda}(p_1, s_1) [\gamma_{\mu}(a + b\gamma_5) + (p_{1i} - p_{2i})(c + id\gamma_5)] v_{\overline{\Lambda}}(p_2, s_2)$ $\times \overline{v}_{\overline{\Lambda}}(p_2, s_2) [\gamma_{\mu}(a^* + b^* \gamma_5) + (p_{1j} - p_{2j})(c^* + id^* \gamma_5)] u_{\Lambda}(p_1, s_1),$ i, j = x, y, z

The spin density matrices

 e⁺e⁻annihilation decay: - (Br=63.9%) e+e- J/ р

Spin density matrices: Spin density matrix:

$$=1 + _{-} S_{1} \cdot q_{1}$$

 $=1 - _{+} S_{2} \cdot q_{2}$

$$\rho_{ij} = \frac{1}{3}\delta_{ij} + \frac{1}{2i}\epsilon_{ijk}\hat{k}_kC - (\hat{k}_i\hat{k}_j - \frac{1}{3}\delta_i)$$

_(~___)=0.642

 $_{ij})D.$

• Expectation value of a general experimental observable *O*:

$$=\frac{1}{N}\frac{\beta}{8\pi}\frac{1}{(4\pi)^3}/d\Omega_p d\Omega_{q1} d\Omega_{q2} OTr[R_{ij}\rho_{ji}\rho_{\Lambda}\rho_{\overline{\Lambda}}]$$

Trace is done to average about unobserved spins.

• CP-odd observable:

 $\begin{array}{c} -(\mathbf{p}) & p(\mathbf{q}_{1}) + & -\\ (-\mathbf{p}) & p(\mathbf{q}_{2}) + & + \end{array}$

$$A = (p \cdot (q_1 \times q_2)) - (-p \cdot (q_1 \times q_2)) B = (p \cdot (q_1 \times q_2))$$

- The expectation values of A and B: $< A >= -\frac{\alpha_{-}^{2}\beta^{2}}{48N}M^{2}(2mRe(da^{*}) + (M^{2} - 4m^{2})Re(dc^{*}))$ $< B >= -\frac{48}{27\pi} < A >$
- The averaged observable A is equal to
 N⁺ N⁻

$$=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}$$

where

N⁺, N⁻: the number of events which have $sgn(p \cdot (q_1 \times q_2)) = + and -$

The d-parameter

The origin of CP-violating d-term
 ✓ electric dipole moment of , d
 ✓ CP violating coupling between Z and
 ✓ etc.

only *d* is considered

• d parameter is described as

$$d = -\frac{2}{3} \frac{g_{\vee}}{M^2} ed$$

Expectation value of A

- The observable A has the terms Re(da*) and Re(dc*). Since the relative contributions of these two terms cannot be determined. Therefore two cases must be considered.
- The upper limit of A:

 $| < A > | = \begin{cases} 5.6 \times 10^{-3} d_{\Lambda} / (10^{-16} ecm), & (a-\text{term dominant}) \\ 1.25 \times 10^{-2} d_{\Lambda} / (10^{-16} ecm), & (c-\text{term dominant}). \end{cases}$

• The present value (PDG)

 $|d| < 1.5 \times 10^{-16} (ecm)$

It is expected that interesting result is acquired if one has 10⁷ J/ events!!

The BES-II Detector

✓A multi-purpose detector operated at the BEPC(Beijing Electron-Positron collider), IHEP, Beijing, China.

✓ The beam energy range of BEPC is from 1.5GeV to 2.8GeV.

✓This detector is designed for charm and physics.

Detector	Major parameter	BESI	BESH
VC	$\sigma_{xy}(\mu m)$	200	100
	$\epsilon_{trk}(\%)$	no	97
MDC	$\epsilon_{wire}(\%)$	96	96
	$\sigma_{xy}(\mu m)$	200-250	190-220
	$\Delta p/p~(\%)$	$1.76\sqrt{1+p^2}$	$1.78\sqrt{1+p^2}$
	$\sigma_{dE/dx}~(\%)$	7.9	8.4
BTOF	$\sigma_T~(\mathrm{ps})$	3 75	180
	L_{atten} (m)	1.0 - 1.2	3 .5 - 5.5
ETOF	$\sigma_T~(\mathrm{ps})$		720
BSC	$\Delta E/\sqrt{E}$ (%)	24	21
	$\sigma_z({ m cm})$	4.5	2.3
ESC	$\Delta E/\sqrt{E}$ (%)	24.4	22.1
μ counter	$\epsilon_{irk}(\%)$	95	95
	$\sigma_z({ m cm})$	5.5	5.5
DAQ	dead time (ms)	20	8

Event display

BES-II parameter

- •2.86 \times 10⁷(hadronic events): collected from 1999 to 2000.
- •Reconstructed tool: DRUNK
- •Monte Carlo event generator: GENSIM
 - ✓ GEANT3 based

✓100000 J/

was generated.

Event selection

- 1. Nch=4: with good charged track fitting. |cos |<0.8: for all charged track.
- 2. Combination cut

۰.

due to decay kinematics, momenta of p and p are larger than those of momentum + and

> P_{pmin}=0.767 GeV P max=0.309 GeV

4 particles are unambiguously identified!

Combining a charge and momentum comfigurations.

Combination cut

Comparison of the m peak before and after combinational cut

✓ Effectively reduces combinational background!

3. 2.95 GeV E_{sum} 3.20 GeV lower energy cut must be treated carefully!

other dibaryon decay modes :

J/		0	0	(Br=1.27 × 10 ⁻³)
	0			(Br=100%)
J/		0	0	(Br=1.80 × 10 ⁻³)
	0			(Br=99.51%)
			0	(Br=0.118%)

these are events associated with photons!

4. 1.49 GeV E ,E- 1.60 GeV

E and E are one half of the J/ mass in the J/ rest frame.

5. 1.10 GeV m , m- 1.13 GeV

p⁻ (p⁺) invariant mass correspond to () mass.

peak: 1.1152 GeV (data) 1.1150 GeV(MC)

6. The events with photons must be eliminated.

The charged hadrons create energy clusters with larger size due to the nuclear interactions.

Analysis(Bhabha events): 0.2m at the inner surface of the shower counter.

More than 0.4m far from any charged tracks.

E_{photon} 0.1 GeV

7. 2.0[°], where is a decay angle between and _

> and are decay back-to-back.

The initial radiation makes an angle fall out from 180 °!

The obtained events

Monte Carlo: 1.0×10^{5} J/ all events $N_{MC}=9587$ data: N=4973 Minimum momentum Maximum momentum as expected by the kinematics!

The measurement of Br(J/

• Br(J/) is calculated to be

- N: The number of observed events.
 - : The efficiency of Monte Carlo simulation

 N_0 : total number of J/ events.

value	number
N	4973
N_0	3.39×10^{7}
ϵ	0.235
$Br(\Lambda { ightarrow} p\pi)^2)$	0.639
$Br(J/\psi \rightarrow \Lambda \overline{\Lambda})$	1.34×10^{-3}

 $\ensuremath{\mathsf{Table 1:}}$ The list of the values which are used for calculating branching fraction

Branching fraction

Br(J/ $)=1.34 \pm 0.02 \times 10^{-3}$ PDG: $1.30 \pm 0.12 \times 10^{-3}$

Systematic errors

source	cyst. $\operatorname{errors}(\%)$
Monte Carlo statistics	1.0
background	0.53
E_{Λ}	0.28
m_{Λ}	0.63
φ	0.008
N_0	2.0
$Br(\Lambda \rightarrow p\pi)$	0.5
Total systematic error of $Br(J/\psi \rightarrow \Lambda \overline{\Lambda})$	2.5

Table 2: The list of the sources of the systematic error

•Total systematic error: 2.5% •Result $Br(J/) = 1.34 \pm 0.02 \pm 0.03 \times 10^{-3}$

Total number of J/ events

• Decay mode:

J/ $\mu^{-}\mu^{+}$

• Back grounds:

e⁻e⁺ μ⁻μ⁺ e⁻e⁺ e⁻e⁺ J/ e⁻e⁺

50000 MC event samples are generated and are analized.

$$N_{J'} = \frac{N - N_{B.G.}}{trg \ \mu \mu} Br(J' \ \mu \mu)$$

• Cuts

- ✓ N_{ch}=2
- ✓ |cos |<0.6</p>
- ✓ 1.0 GeV p+, p 2.1 GeV
- ✓ vertex:
 - |r_{+,-}|<0.015
 - |z_{+,-}|<0.15
- |Z_{+,-}|<

decay mode	obs. events
$J/\psi \rightarrow \mu\mu$	8.26×10^{5}
$e^+e^- \rightarrow \mu\mu$	5.84×10^{4}
$J/\psi{ ightarrow}\mu\mu$	1.38×10^{2}
Bhabha	50.8
$N_{J/\psi}$	3.39×10^{7}

Table 1: The list of the number of observed events.

✓ tof:

|T₊ - T<u>|</u><1.0 nsec

|T - T_{exp}|<0.7 nsec

Total number of J/ :

 $N_{J/} = 3.39 \pm 0.07 \times 10^7$

error: 2.0%

The analysis of CP violation

• Asymmetry A

$$=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}$$

Analysis

$$N = 2402$$

 $<A>=3.40 \times 10^{-2}$

Figure 1: The distribution of asymmetry A.

Systematic errors

source	syst. $\operatorname{errors}(\%)$
background	0.53
E_{Λ}	0.28
m_{Λ}	0.63
φ	0.008
angular resolution	0.48
momentum resolution	0.56
Total systematic error of asymmetry	1.1

Table 3: The list of the sources of the systematic error

•Total systematic error: 1.1% •Result $<A>=3.40 \pm 1.43 \pm 0.3 \times 10^{-2}$ $|<A>|<5.78 \times 10^{-2}$ CL=90% $|d_{\Lambda}| < \begin{cases} 10.3 (\times 10^{-16} ecm), & (a-term dominant) \\ 4.62 (\times 10^{-16} ecm), & (c-term dominant) \end{cases}$

Results

- Branching fraction Br(J/)=1.34 ± 0.02 ± 0.03 × 10⁻³ This measurement supersedes current world average.
- Asymmetry
 |<A>|<5.78 × 10⁻²

It seems to have a sign of CP violation? this problem needs to analyze more precisely.

Discussion

• Asymmetry A is 2.5 above zero. $|d| < 1.5 \times 10^{-16} (ecm)$

This upper limit is restricted electric and colour dipole moment of strange quark? (c.f. hep-ph/0010105(2000))

Advanced analysis

 Using whole the BES J/ events.
 5.0 × 107 J/ events are already collected (from 1999 to 2002).
 the upper limit of d will improve.

Using other CP-odd observables.

constructed from momenta k, p, q_+, q_- . ex.) tensor observable

$$T_{ij} = (q_- - q_+)_i (\boldsymbol{q}_- \times \boldsymbol{q}_+)_j + (q_- - q_+)_j (\boldsymbol{q}_- \times \boldsymbol{q}_+)_i.$$

But it is difficult to evaluate the consequence in this case.

This problem needs to analyze more precisely.