A study of J / ψ decay using the BES－II detector $(\mathrm{J} / \Psi \rightarrow \wedge \bar{\Lambda}$ 過程の研究）

Masakazu Kurata
University of Tokyo
（The BES collaboration）

Motivation

- To measure Branching fraction:

$$
\operatorname{Br}(\mathrm{J} / \psi \rightarrow \Lambda \bar{\Lambda})
$$

※This measurement supersedes the current world average!

- To observe direct CP violation:
\rightarrow comes from CP violating part of the decay amplitude

Phenomenology

※Measuring CP violation in 2 body decay
decay mode :

$$
\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \Psi \rightarrow \Lambda\left(\mathrm{s}_{1}\right) \bar{\Lambda}\left(\mathrm{s}_{2}\right) \quad \text { s1,s2: spin vector }
$$

Method of calculating CP-odd observable

 Decay mode:$$
\mathrm{J} / \Psi \rightarrow \Lambda \bar{\Lambda}
$$

The decay amplitude M :

$$
\begin{aligned}
& \mathcal{M}(J / \psi \rightarrow \Lambda \bar{\Lambda})=\epsilon^{\mu} \bar{u}_{\Lambda}\left(p_{1}\right)\left[\gamma_{\mu}\left(a+b \gamma_{5}\right)+\left(p_{1 i}-p_{2 i}\right)\left(c+i d \gamma_{5}\right)\right] v_{\bar{\Lambda}}\left(p_{2}\right), \\
& \text { a,b,c,d }: \text { complex parameter } \\
& \epsilon^{\mu}=(0, \vec{\epsilon}) \text { : a polarization vector of } \mathrm{J} / \Psi
\end{aligned}
$$

The decay matrix $R_{i j}$:

$$
\begin{aligned}
& R_{i j}=\bar{u}_{\Lambda}\left(p_{1}, s_{1}\right)\left[\gamma_{\mu}\left(a+b \gamma_{5}\right)+\left(p_{1 i}-p_{2 i}\right)\left(c+i d \gamma_{5}\right)\right] v_{\Lambda}\left(p_{2}, s_{2}\right) \\
& \times \bar{v}_{\bar{\Lambda}}\left(p_{2}, s_{2}\right)\left[\gamma_{\mu}\left(a^{*}+b^{*} \gamma_{5}\right)+\left(p_{1 j}-p_{2 j}\right)\left(c^{*}+i d^{*} \gamma_{5}\right)\right] u_{\Lambda}\left(p_{1}, s_{1}\right), \\
& \quad \mathrm{i}, \mathrm{~F} \mathbf{x} \mathbf{y}, \mathrm{z}
\end{aligned}
$$

The spin density matrices

- \wedge decay:
$\wedge \rightarrow \mathrm{p} \pi{ }^{-}(\mathrm{Br}=63.9 \%)$
- $\mathrm{e}^{+} \mathrm{e}^{-}$annihilation
$\mathrm{e}^{+} \mathrm{e}^{-} \rightarrow \mathrm{J} / \psi$

Spin density matrices: Spin density matrix:

$$
\begin{aligned}
& \rho_{\Lambda=1+\alpha_{-}} \mathbf{s}_{1} \cdot \mathbf{q}_{1} \\
& \rho_{\bar{\Lambda}}=1-\mathbf{a}_{+} \mathbf{s}_{2} \cdot \mathbf{q}_{2} \\
& \mathbf{a}_{-}\left(\sim \mathbf{a}_{+}\right)=0.642
\end{aligned}
$$

- Expectation value of a general experimental observable O :

$$
<O>=\frac{1}{N} \frac{\beta}{8 \pi} \frac{1}{(4 \pi)^{3}} \int d \Omega_{p} d \Omega_{q 1} d \Omega_{q 2} O \operatorname{Tr}\left[R_{i j} \rho_{j i} \rho_{\Lambda} \rho_{\bar{\Lambda}}\right]
$$

Trace is done to average about unobserved spins.

- CP-odd observable:

$$
\begin{aligned}
& \pi(p) \rightarrow p\left(q_{1}\right)+\pi^{-} \\
& \Lambda(p) \rightarrow p\left(q_{2}\right)+\pi+ \\
& A=\theta\left(p \cdot\left(q_{1} \times q_{2}\right)\right)-\theta\left(-p\left(q_{1} \times q_{2}\right)\right) \\
& B=\theta\left(p\left(q_{1} \times q_{2}\right)\right)
\end{aligned}
$$

- The expectation values of A and B :

$$
\begin{aligned}
& <A>=-\frac{\alpha_{-}^{2} \beta^{2}}{4 N} M^{2}\left(2 m \operatorname{Re}\left(d a^{*}\right)+\left(M^{2}-4 m^{2}\right) \operatorname{Re}\left(d c^{*}\right)\right) \\
& =-\frac{48}{27 \pi}<A>
\end{aligned}
$$

- The averaged observable A is equal to

$$
\langle A\rangle=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

where

$$
\begin{aligned}
& \mathrm{N}^{+}, \mathrm{N}^{-} \text {: the number of events which have } \\
& \qquad \operatorname{sgn}\left(\mathrm{p}\left(\mathrm{q}_{1} \times \mathrm{q}_{2}\right)\right)=+ \text { and }-
\end{aligned}
$$

The d-parameter

- The origin of CP-violating d-term
\checkmark electric dipole moment of Λ, d_{Λ}
\checkmark CP violating coupling between Z and \wedge
\checkmark etc.
$\rightarrow \%$ only d_{Λ} is considered
- d parameter is described as

$$
\mathrm{d}=-\frac{2}{3} \frac{\mathrm{gv}}{\mathrm{M}^{2}} \mathrm{ed} \mathrm{~d}_{\Lambda}
$$

Expectation value of A

- The observable A has the terms $\operatorname{Re}\left(d a^{*}\right)$ and $\operatorname{Re}\left(d^{*}\right)$. Since the relative contributions of these two terms cannot be determined. Therefore two cases must be considered.
- The upper limit of A :

$$
|<A>|= \begin{cases}5.6 \times 10^{-3} d_{\Lambda} /\left(10^{-16} e \mathrm{~cm}\right), & (a \text {-term dominant }) \\ 1.25 \times 10^{-2} d_{\Lambda} /\left(10^{-16} e \mathrm{~cm}\right), & (c \text {-term dominant }) .\end{cases}
$$

- The present value (PDG)

$$
\left.\left|d_{h}\right|<1.5 \times 10^{-16} \mathrm{ecm}\right)
$$

It is expected that interesting result is acquired if one has $10^{7} \mathrm{~J} / \psi$ events!!

The BES-II Detector

\checkmark A multi-purpose detector operated at the BEPC(Beijing Electron-Positron collider), IHEP, Beijing, China.
\checkmark The beam energy range of BEPC is from 1.5 GeV to 2.8GeV.
\checkmark This detector is designed for charm and T physics.

Detector	Major parameter	BESI	BESII
VC	$\sigma_{\text {sy }}(\mu \mathrm{m})$	200	100
	$\epsilon_{l i k k}(\%)$	no	97
MDC	$\epsilon_{\text {wiree }}(\%)$	96	96
	$\sigma_{\text {svi }}(\mu m)$	200-250	190-220
	$\Delta p / p$ (\%)	$1.76 \sqrt{1+p^{2}}$	1.78 $\sqrt{1+p^{2}}$
	$\sigma_{\text {dej } / d e}(\%)$	7.9	8.4
BTOF	σ_{T} (ps$)$	375	180
	$L_{\text {atase }}(\mathrm{m})$	1.0-1.2	3.5-5.5
ETOF	$\sigma_{\mathrm{T}^{\prime}}(\mathrm{ps})$		720
BSC	$\Delta E / \sqrt{E}$ (\%)	24	21
	$\sigma_{z}(\mathrm{~cm})$	4.5	2.3
ESC	$\Delta E / \sqrt{E}(\%)$	24.4	22.1
μ counter	$\epsilon_{l p k}(\%)$	95	95
	$\sigma_{z}(\mathrm{~cm})$	5.5	5.5
DAQ	dead time (ms)	20	8

BES-II parameter

Event display
-2.86× 107 (hadronic events): collected from 1999 to 2000.
-Reconstructed tool: DRUNK
-Monte Carlo event generator: GENSIM
\checkmark GEANT3 based
$\checkmark 100000 \mathrm{~J} / \psi \rightarrow \wedge \wedge$ was generated.

Event selection

1. Nch=4: with good charged track fitting. $|\cos \theta|<0.8:$ for all charged track.
2. Combination cut
※due to decay kinematics, momenta of p and
p are larger than those of momentum π^{+}and $\pi{ }^{-}$.

$$
\begin{aligned}
& P_{p \min }=0.767 \mathrm{GeV} \\
& P_{\pi \max }=0.309 \mathrm{GeV}
\end{aligned}
$$

4 particles are unambiguously identified!
\rightarrow Combining a charge and momentum comfigurations.

Combination cut

3. $2.95 \mathrm{GeV} \leqq \mathrm{E}_{\text {sum }} \leqq 3.20 \mathrm{GeV}$

lower energy cut must be treated carefully!
\rightarrow other dibaryon decay modes:

$$
\begin{array}{rll}
\mathrm{J} / \Psi \rightarrow \Sigma{ }^{0} \Sigma 0 & \left(\mathrm{Br}=1.27 \times 10^{-3}\right) \\
\Sigma 0 \rightarrow \Lambda ~ Y & (\mathrm{Br}=100 \%) \\
\mathrm{J} / \Psi \rightarrow \equiv{ }^{0} \equiv 0 & \left(\mathrm{Br}=1.80 \times 10^{-3}\right) \\
\equiv 0 \rightarrow \Lambda \gamma & (\mathrm{Br}=99.51 \%) \\
\rightarrow \Lambda \pi^{\circ} & (\mathrm{Br}=0.118 \%)
\end{array}
$$

※these are $\wedge \bar{\wedge}$ events associated with photons!
4. 1.49 $\mathrm{GeV} \leqq \mathrm{E}_{\wedge}, \mathrm{E}_{\bar{\wedge}} \leqq 1.60 \mathrm{GeV}$
$\rightarrow \mathrm{E}_{\wedge}$ and E_{\wedge} are one half of the J / ψ mass in the J / ψ rest frame.
5. $1.10 \mathrm{GeV} \leqq \mathrm{m}_{\wedge}, \mathrm{m}_{\bar{\Lambda}} \leqq 1.13 \mathrm{GeV}$ $\rightarrow \pi^{-}\left(\mathrm{p} \pi^{+}\right)$invariant mass correspond to $\wedge(\bar{\Lambda})$ mass. peak: 1.1152 GeV (data)
$1.1150 \mathrm{GeV}(\mathrm{MC})$

6. The events with photons must be eliminated.
\rightarrow The charged hadrons create energy clusters with larger size due to the nuclear interactions.

7. $\varphi \leq 2.0^{\circ}$, where φ is a decay angle between
$\rightarrow \Lambda$ and $\bar{\Lambda}$ are decay back-to-back.
※The initial radiation makes an angle fall out from 180°

The obtained events

Monte Carlo :1.0× 10^{5}

$$
\begin{gathered}
\mathrm{J} / \Psi \rightarrow \Lambda \bar{\Lambda} \rightarrow \text { all events } \\
\mathrm{N}_{\mathrm{MC}}=9587
\end{gathered}
$$

data $: N=4973$

Minimum momentum
Maximum momentum
\rightarrow as expected by the kinematics!

The measurement of $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \wedge \wedge)$

- $\operatorname{Br}(\mathrm{J} / \psi \rightarrow \Lambda \bar{\Lambda})$ is calculated to be
$\operatorname{Br}(\mathrm{J} / \Psi \rightarrow \Lambda \bar{\Lambda})=\frac{\mathrm{N}}{\in \operatorname{NoBr}(\Lambda \rightarrow \mathrm{p} \pi)^{2}}$

N : The number of observed events.
$\epsilon:$ The efficiency of Monte Carlo simulation
N_{0} : total number of J / Ψ events.

value	number
N	4973
N_{0}	3.39×10^{7}
ϵ	0.235
$\left.B r(\Lambda \rightarrow p \pi)^{2}\right)$	0.639
$B r(J / \psi \rightarrow \Lambda \bar{\Lambda})$	1.34×10^{-3}

- Branching fraction

Table 1: The list of the values which are used for calculating branching fraction

$$
\begin{aligned}
& \operatorname{Br}(\mathrm{J} / \psi \rightarrow \wedge \bar{\Lambda})=1.34 \pm 0.02 \times 10^{-3} \\
& \mathrm{PDG}: \quad 1.30 \pm 0.12 \times 10^{-3}
\end{aligned}
$$

Systematic errors

source	cyst. errors(\%)
Monte Carlo statistics	1.0
background	0.53
E_{Λ}	0.28
m_{Λ}	0.63
φ	0.008
N_{0}	2.0
$B r(\Lambda \rightarrow p \pi)$	0.5
Total systematic error of $\operatorname{Br}(J / \psi \rightarrow \Lambda \bar{\Lambda})$	2.5

Table 2: The list of the sources of the systematic error
-Total systematic error: 2.5\%
-Result

$$
\operatorname{Br}(\mathrm{J} / \psi \rightarrow \wedge \bar{\Lambda})=1.34 \pm 0.02 \pm 0.03 \times 10^{-3}
$$

Total number of J / ψ events

- Decay mode:

$$
\mathrm{J} / \psi \rightarrow \mu-\mu+
$$

- Back grounds:

$$
\begin{gathered}
\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mu-\mu^{+} \\
\mathrm{e}^{-} \mathrm{e}^{+} \rightarrow \mathrm{e}^{-} \mathrm{e}^{+} \\
\mathrm{J} / \psi \rightarrow \mathrm{e}^{-} \mathrm{e}^{+}
\end{gathered}
$$

※50000 MC event samples are generated and are analized.

$$
N / / \psi=\frac{N-N \text { B.G }}{\epsilon \operatorname{trg} \in \mu \mu \operatorname{Br}(J / \psi \rightarrow \mu \mu)}
$$

- Cuts

$$
\begin{aligned}
& \checkmark \quad \mathrm{N}_{\mathrm{ch}}=2 \\
& \checkmark \quad|\cos \theta|<0.6 \\
& \checkmark 1.0 \mathrm{GeV} \leq p+, p- \\
& \leqq 2.1 \mathrm{GeV} \\
& \checkmark \text { vertex: } \\
& \left|r_{\text {r. }}\right|<0.015 \\
& \left|z_{+, .}\right|<0.15 \\
& \\
& \checkmark \text { tof: } \\
& \left|T_{+}-T_{-}\right|<1.0 \mathrm{nsec} \\
& \left|T-T_{\text {exp }}\right|<0.7 \mathrm{nsec}
\end{aligned}
$$

Total number of J / Ψ :

$\mathrm{N}_{\mathrm{J} / \psi}=3.39 \pm 0.07 \times 10^{7}$
error: 2.0\%

The analysis of CP violation

- Asymmetry A

$$
\langle A\rangle=\frac{N^{+}-N^{-}}{N^{+}+N^{-}}
$$

- Analysis
$\mathrm{N}^{+}=2571$,
$\mathrm{N}^{-}=2402$

$$
\rightarrow\left\langle A>=3.40 \times 10^{-2}\right.
$$

Systematic errors

source	syst. errors(\%)
background	0.53
E_{Λ}	0.28
m_{Λ}	0.63
φ	0.008
angular resolution	0.48
momentum resolution	0.56
Total systematic error of asymmetry	1.1

Table 3: The list of the sources of the systematic error
-Total systematic error: 1.1\%
-Result

$$
\begin{aligned}
& \left\langle A>=3.40 \pm 1.43 \pm 0.3 \times 10^{-2}\right. \\
& |<A>|<5.78 \times 10^{-2} \quad C L=90 \% \\
& \left|d_{A}\right|< \begin{cases}10.3\left(\times 10^{-16} e \mathrm{~cm}\right), & \text { (a-term dominamt) } \\
4.62\left(\times 10^{-16} e \mathrm{~cm}\right), & \text { (c-term dominamt) }\end{cases}
\end{aligned}
$$

Results

- Branching fraction

$$
\operatorname{Br}(\mathrm{J} / \Psi \rightarrow \Lambda \bar{\Lambda})=1.34 \pm 0.02 \pm 0.03 \times 10^{-3}
$$

\rightarrow This measurement supersedes current world average.

- Asymmetry

$$
|<A>|<5.78 \times 10^{-2}
$$

\rightarrow It seems to have a sign of CP violation?
※this problem needs to analyze more precisely.

Discussion

- Asymmetry A is 2.5σ above zero.

$$
\left|d_{\lambda}\right|<1.5 \times 10^{-16} \text { ecm) }
$$

\rightarrow This upper limit is restricted electric and colour dipole moment of strange quark?
(c.f. hep-ph/0010105(2000))

- Advanced analysis
(1) Using whole the BES J / Ψ events.
※5.0× $107 \mathrm{~J} / \psi$ events are already collected (from 1999 to 2002).
\rightarrow the upper limit of d_{\wedge} will improve.
(2) Using other CP-odd observables.
\rightarrow constructed from momenta k, p, q_{+}, q_{-}. ex.) tensor observable

$$
T_{i j}=\left(q_{-}-q_{+}\right)_{i}\left(\boldsymbol{q}_{-} \times \boldsymbol{q}_{+}\right)_{j}+\left(q_{-}-q_{+}\right)_{j}\left(\boldsymbol{q}_{-} \times \boldsymbol{q}_{+}\right)_{i} .
$$

※But it is difficult to evaluate the consequence in this case.

This problem needs to analyze more precisely.

