A Brand-new Neutrino Detector "SciBar" (1) Status and prospects

Masaya Hasegawa (Kyoto Univ.) for the K2K SciBar Group

Contents

- K2K NDs status & Motivation for SciBar
- SciBar Detector
- Installation in last summer
- SciBar working status
- Summary

- Observe all particle from interaction. (Full Active & Tracking)
- Identify the recoil Proton (from low momentum)
- PID (p/)
- Large Volume

Kyoto Univ Masaya Hasegawa

Motivation for SciBar

K2K Near Neutrino Detector

- detect both CCqe and nonQE
- as 1ring μ event (fraction ~ 50%)
- Scintillating fiber tracker (6t fiducial)
 - Low efficiency @ low energy
 - dead space around vertex (fraction

~60%)

Kyoto Univ Masaya Hasegawa

Hakuba 10th Symposium Feb. 15 – 18, 2004

Need

a new detector !

Kyoto Univ Masaya Hasegawa

SciBar Installation

	6/22	6/23	6/30	7/7	7/14	7/21	7/28	8/4	8/11	8/18	8/25	9/1	9/8	9/15
	beam													
	end													
e-calorimeter														
Layer														
Fiber, PMT, FEB														
comissioning														

S.Aoki, J.Arygyriades, S.S.Choi, M.Hasegawa, Hiraide, K.Hayashi, A.K.Ichikawa, Iinuma, Eric J., E.J.Jeon, K.K.Joo, D.Kerr, K.Kobayasi, A.Kohara, J.Kubota, M.J.Lee, I.T.Lim, H.Maesaka, O.Mineev, T.Morita, Y.Nakanishi, K.Nishikawa, K.Nitta, P.Rovegno, T.Nakaya, T.Sasaki, A.Suzuki, K.K.Shiraishi, Y.Takubo, R.Terri, M.Tuchscher, S.Yamamoto, M.Yokoyama, M.Yoshida, Z.Nawang (and more?)

Almost no change from this schedule!

(体育会系的がんばり!)

Kyoto Univ Masaya Hasegawa

Kyoto Univ Masaya Hasegawa

SciBar Installation (2)

Kyoto Univ Masaya Hasegawa

SciBar Installation – complete !

Kyoto Univ Masaya Hasegawa

SciBar in the News

KEK High Ener	レギー加速器研究機構 rgy Accelerator Research Organization		
トップ KEKとは KEK ツ	アー よくある質問 News@KEK キッズサ	<mark>イエンティスト 関連サイト</mark> トップ >>	> <u>ニュース</u> >>> この記事
■ ニュートリノを	つかまえろ! 2003.10.16		
~ 新型検出器	着SciBar \sim		
KEKの陽子加速器を れた岐阜県神岡鉱山 で、ニュートリノの振動 も何度ねご紹介しまし	Nikkei News	2004.01.12	
ナンス作業のために ました。今回は、K2K 置についてご説明し	KEK News	2003.10.16	ートリノと物質の反応 観測装置が稼働
	構 本 。 。 。 。 。 。 本 の の リ ノ が に 。 あ 約 二 に 。 あ 約 二 に 。 あ わ に 、 B 。 。 。 む ち の リ ノ の 始 に う に 。 、 ら も の し 、 ら む に う こ に う に ら わ こ こ ら こ ら に う に う に う に う に ら ち こ こ ら に う こ こ ら に う こ ら こ ら に う こ ら こ ら こ ら に う こ ら こ ら 、 に う こ ら こ ら 、 に う こ こ こ ら 、 に う こ ら 、 に う こ こ ら 、 に う こ こ こ ら 、 に う こ こ ら 、 に う こ こ ら 、 に う こ こ ら 、 に う こ こ ら こ こ ら こ こ ら こ こ ら こ こ こ う こ こ こ う こ う こ う こ こ こ う こ こ こ う こ こ こ う こ こ こ う こ う こ こ こ う こ こ こ こ こ こ こ こ こ こ こ こ こ	と 雪二 二 つ て 一 つ し 「 加 高 エ ネ 福 古 る 王 ス 福 古 る 王 ス 福 古 る 王 ス 福 古 る 王 ス 福 古 る 王 ス 福 一 ト じ 市) 一 ト じ 市) 一 ト じ 市) 一 、 一 ト じ 市) 一 、 二 、 一 、 二 、 一 、 二 、 一 、 二 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 一 、 、 、 、 、 、 、 、 、 、 、 、 、	#精度向上めざす
	レートリノの性質を調べ エすれば、実験精度が内 したり着いで、ビーム シデータを使って、ビーム シデータを使って、ビーム シアータを使って、ビーム シアータを使って、ビーム	やりノが中性子や陽子と で、詳し の能力が不十分で、詳し の能力が不十分で、詳し い様子は解明されていな かった。 両工ネ研は加速器を使 町にある東京大学の観測	性子と衝突すると、 陽子 などが生み出され、 たで飛ぶ。粒子が通り たのデータを分析する このデータを分析する したがが分かる。ニュー

Kyoto Univ Masaya Hasegawa

Current Status

- data taking from Oct.10 and working SciBar started well.
 - few dead channel (6/14336 = 0.04%)
 - collect ~7000 int./10ton/5E18POT(1month)
 - collect calibration data (cosmic,LED) with beam

	beam	pedestal	LED	Cosmic ray
0.6s	35µs	100ns, 1take	1µs,1take	Suppression mode

We have already done

- checking the basic hardware performance
- calibration (energy, timing), detector alignment
- comparing with MC and other detectors using Muon sample (very preliminary)

Kyoto Univ Masava Hasegawa Hakuba 10th Symposium Feb. 15 – 18, 2004

Kyoto Univ Masaya Hasegawa

Hakuba 10th Symposium Feb. 15 – 18, 2004

Kyoto Univ Masaya Hasegawa

Nucleon spin crisis What carries the proton spin? - valence quarks, sea quarks or gluons?

(NCE)/ (CCQE) ratio probes Strange sea contribution to nucleon spin (Nuclear Physics B 105 (2002) 62)

Kyoto Univ Masaya Hasegawa

Cosmic Ray Data

- We use penetrating cosmic-ray muon as a (strip to strip) relative energy calibration source.
- Mean ~ 140 count (design value)
- response is very stable

Gain Monitor (1)

Kyoto Univ Masaya Hasegawa

Kyoto Univ Masaya Hasegawa

Muon Track Analysis (1)

■ As a first step , we checked and compared the basic distribution (vertex, momentum) with MC on the clean muon sample. $(p_{\mu}>0.5GeV/c, ~35\% \text{ eff all})$ int.)

Vertex Distribution

Data agree with MC well

Kyoto Univ Masaya Hasegawa

Momentum Distribution

Summary

- We installed a brand new neutrino detector "SciBar" to the K2K near detectors.
 - measurement of the spectrum precisely
 - studying interactions (and more physics)
- SciBar is working very well from Oct. 7,2003. And observed many good neutrino events.
- Basic distributions reasonably agree with MC.

More to come !

Kyoto Univ Masaya Hasegawa

List of shift takers in this summer

S.Aoki, J.Arygyriades, S.S.Choi, M.Hasegawa, Hiraide, K.Hayashi, A.K.Ichikawa, Iinuma, Eric J., E.J.Jeon, K.K.Joo, D.Kerr, K.Kobayasi, A.Kohara, J.Kubota, M.J.Lee, I.T.Lim, H.Maesaka, O.Mineev, T.Morita, Y.Nakanishi, K.Nishikawa, K.Nitta, P.Rovegno, T.Nakaya, T.Sasaki, A.Suzuki, K.K.Shiraishi, Y.Takubo, R.Terri, M.Tuchscher, S.Yamamoto, M.Yokoyama, M.Yoshida, Z.Nawang (and more?)

CNU, KEK, Hiroshima, Kobe, Kyoto, Saclay, SNU, StonyBrook, INR, Washington, Osaka, UCI (and more?)

Data Taking modes

	beam	pedestal	LED	Cosmic ray
0.6s	35µs	100ns, 1take	1µs,1take	Suppression mode

Read out : ~100ms/event

Data

ADC for all channels

TDC for all TA's -> each 32channel -> 2 TDC for each PMT

Suppression mode : ADC only for TA hit channel

For EC, ADC for all channels, no TDC

Electron Catcher

- "spaghetti" calorimeter re-used from CHORUS
- 1mm diameter fibers in the grooves of lead foils
- 4x4cm² cell read out from both ends
- 2 planes (11X₀)
 Horizontal: 30 modules
 Vertical : 32 modules
- Expected resolution 14% E
- Linearity: better than 10%

SciBar Detector

Kyoto Univ Masaya Hasegawa

Event rate & N_{SK}

- For comparing the event rate with other Detector
- 2627 events / 6.216x10¹⁸POT / 9.38t

- No official number (not finishing sys. error estimation & near/far calculation yet)
- But Consistent with other detectors \bullet

Fiber Attenuation

400

Energy Calibration

Attenuation Correction

Timing Resolution

Particle ID (Results From Beam

pion confidence level (pion)

Extruded Scintillator

- Polystylene with PPO 1% and POPOP 0.3%
 - Usual plastic scintillator component
 - Peak of emission spectrum : 420nm
- TiO₂ reflector (white) (0.25mm-thick)
 - Increase light yield
 - Optical isolation
 - Extruded together
- Cheep : \sim \$20 / kg
- Made by Fermilab

