Development of a new MeV gamma-ray camera

ICEPP Symposium February 16, 2004 Hakuba, Nagano, Japan

Kyoto University

Atsushi Takeda

H. Kubo, K. Miuchi, T. Nagayoshi,

Y. Okada, R. Orito, A. Takada,

T. Tanimori, M. Ueno

- 1. MeV Gamma-ray Astronomy
- 2. New MeV Gamma-ray Camera
- 3. Prototype Detector
- 4. Summary & Future Works

1. MeV Gamma-ray Astronomy

Expected sources in MeV region

- Supernova Remnants (SNRs)
 ²⁶Al(1.8MeV), ⁴⁴Ti(1.16MeV), Nuclear gamma
- Active Galactic Nuclei (AGN) jets

Optical Violent Variable (OVV) galaxy, Blazar

Black Hole

Binaries, Galactic Center, Primordial BH, 511keV

- Gamma Ray Bursts
 Polarization
- Pulsars

Mev γ -ray imaging detectors

- 1. Collimator + source 🛨 Position Sensitive Detector (PSD)
 - Narrow field of view
 - Background from collimator
 - Energy < 1MeV

2. Single or Multiple Compton (Classical Compton Method)

PSD

semiconductor

COMPTEL (aboard CGRO satellite: 1991~2000)

Classical Compton method

• energies of scattered γ and recoil e^- : E_1 , E_2

$$E_0, \phi$$

$$\cos \phi = 1 - m_e c^2 \left(\frac{1}{E_2} - \frac{1}{E_1 + e^2} \right)$$

 positions where scattering and γ absorption occurred

event axis direction

Only event circle can be determined > No background rejection

2. New MeV Gamma-ray Camera

Micro Plxel gas Chamber (μ-PIC)

Key device for the recoil electron tracking

Performance of the μ-PIC

Stable operation: > 1000 hours with gain of 6000

Performance of the μ -PIC

Tracking performance of the micro-TPC

~210 μ m using 50MHz DAQ in the near future

3. Prototype Detector

• Ar + $C_2 H_6$ (9:1) memory ASD chips board Nal(TI) Anger camera RI source 10 X 10 X 2.5 cm³ • 25 PMTs encoder

No Veto or Shield !

position resolution ~6.7mm (FWHM) energy resolution ~11.2% (662keV, FWHM)

Typical reconstructed event

Gamma-ray imaging for known energy sources

Angular Resolution Measure (ARM): ~15 ° Scatter Plane Deviation (SPD): ~25 °

e

Comparison with the classical Compton method

4. Summary & Future works

- Event by event full reconstruction well established even for the continuous γ -ray Good background rejection capability higher S/N than that of classical Compton ✓ Prototype performance (full reconstruction) • ARM(RMS) ~15 ° • SPD(RMS) ~35 ° ➤ ARM (goal: ~3°) > SPD (goal: ~5°) clock up of micro-TPC • uniformity of micro-TPC (20MHz 50MHz) higher energy resolution • gas study (Ar CF_4) • large volume micro-TPC • pixelization of scintillator more precise tracking
- higher position resolution

Crystal structure analysis with RCP^{*} method

*RCP: Rotation Continuous Photograph

Clock up of the micro-TPC

Higher spatial resolution —> More precise tracking of of micro-TPC recoiled electron

Theoretical limits of angular resolution in the ARM direction

Owing to the **Doppler broadening** of the scattered g-ray energy

Angular resolutions (ARM) for various nuclei A.Zoglauer, et.al.(SPIE, 2003)

	Ar	Xe	Si	CdTe
200keV	2.6°	3.3	1.8	3.5 [°]
500keV	1.1°	1.5	0.8	1.6°
1MeV	0.5	0.8	0.4°	0.9°

Theoretical limits of angular resolution in the SPD direction

Owing to the multiple scattering in the tracking detector

Very hard to obtain the precise direction of the recoiled ein the solid detector

Effective area **Effective area of COMPTEL** 10 ~40cm² @ 1MeV Ar 2atm Probability [%] Xe 1atm 50cm cube gas detector Compton effective area Ar 1atm ~30cm² @ 1MeV (Xe 1atm) 10-1 Gas detector has enough Gas thickness: 50cm Compton scattering 10⁻² 11111 10-1 10² 10 capability Energy [MeV]

Position Sensitive Scintillation camera

 \checkmark 4" \times 4" \times 1" NaI(TI) Scintillator

- ✓ 5 × 5 Hamamatsu ¾" R1166 PMT
- ✓ PhotoCathode Cover rate 40%
- ✓ Dynamic Range 0.1 ~ 1MeV

30cm × 30cm µ-PIC

Electronics

Encoding board

- 5 FPGAs
- take anode–cathode coincidence @ 20MHz

