XMASS experiment Current status

10th ICEPP Symposium in Hakuba 16 Feb 2004

> Yohei Ashie ICRR Univ.of Tokyo

Why liq. Xe?

- Large photon yield (~42000photons/MeV)
- Compact detector size (~3g/cm³ 10ton=1.5m cubic)
- Purification (distillation)
- No long life isotope
- Scintillation wavelength (175nm, detect directly by PMT)
- Relative high temperature (~165K)

• Self-shield (large Z=54)

Several orders of magnitude reduction can be expected for energy less than 250keV at 20cm

• easy isotope separation

¹³⁶Xe : double beta decay odd-Xe : WIMPs spin Dep. interaction even-Xe : WIMPs spin InDep. interaction

100kg Detector current status/analysis

1. Introduction of 100kg detector

Menu of R&D

- Low background setup
- Vertex / energy reconstruction
- Demonstration of self-shielding
- Purification system
- attenuation length
- neutron B.G. study

etc.

2. Low background setup • selection of material

Inner Vacuum Chamber}made of OFCOuter Vacuum Chamber

PMT

R			
1		1	
6	-	1	
		Y.	
	-	1	

PMT base :	glass PCB	PTFE P
238 U	~ 1/100 (~	10 ⁻³ Bq/PM

• Glass tube metal tube

	U(Bq/PMT)	Th(Bq/PMT)	K(Bo
R8778	2.0 × 10 ⁻²	7.0 × 10 ⁻³	1.4 >
ZK0667	5.0 x 10 ⁻¹	1.2 × 10 ⁻²	6.1>

Low background PMT !!

Other materials are also low radioactivity.

2. Low background setup • external BG shield

3. Vertex/Energy reconstruction

GEANT simulation **PMT** hit-map

F(x,y,z,i) : acceptance of ith PMT view from position(x,y,z)

Interpolation with Event simulation @ 2.5[cm] lattice points of 100kg chamber

Find vertex and Energy which gives MAX Likelihood

$$Log(L) = \sum_{PMT} Log(\frac{exp(-\mu)\mu^n}{n!})$$

L: likelihood μ : F(x, y, z) x (total p.e./total acceptance) n: observed number of p.e.

	petot 692 (x,y,z)=(0.215679, -3. (rx,ry,rz)=(0.000, -3.0 reconstructed energy	.33688, -8.55245) 11, -8.068) = 1.022779 MeV	0 & A (J3 (J8 J (J1 (23 (J5	2
	ට ල 5 00 03 03 4 01 8	2 4 d0 2 d4 33 1 d3 d7	1 0 1 7 88 4 0 65 5	02 3 (2) (3 (7) 6
RED : Orig GREEN : Rec	in position onstructed	position	0 3 3 9 7 8 0 3 0	1 N alp

100kg XMASS detector

5. PMT cooling test

Actually, PMT temperature is about 200[K] during measurement.

multi photons measurement with gas Xe chamber : Q.E × Gain single photon measurement with LED : Gain

assumption of gain calibration from vertex/Energy reconstruction simulation

Dispersion of PMT gain at low temperature is no problem

6. Data analysis

vertex/Energy reconstruction Demonstration of self-shielding Low Background

Future plan with 100kg detector

• 1st run: DONE!

- Confirmed the basic properties
- Evaluated the event reconstruction performance
- Background measurements and breakdown of its origin
- Further study:
 - Detailed study of event reconstruction
 Source run with inner sources
 - Detailed study of the background
 With a distiller and various purification systems
 With a neutron source

800kg Detector simulation/future plan

- **1. Introduction**
- 2. BG simulation
- 3. Expected Sensitivity for DM

1. Introduction of 800kg detector DARK MATTER search

100kg liquid Xe ~80cm diameter sphere About 640 2-in PMTs 75% photo-coverage 5 p.e./keV

2. External background in 800kg detector

• Assuming further 1/10 reduction of PMTs BG

3. Expected sensitivity for DM

Summary

XMASS experiment.

Ultra low background experiment with liquid Xenon And there are some physical purposes.

1st run of 100kg detector was done:

Event reconstruction worked well **Background level was low as expected** Self-shielding power was confirmed

Next 800kg detector:

Designed for dark matter search Will has a extremely high sensitivity for DM detection

