### J-PARCでの

## µ-e転換過程探索実験

### --- PRISM/Phase-I ----

Masaharu Aoki Osaka U.

東京大学ICEPP, 2007/11/06



#### イントロダクション

- Lepton Flavor Violationの理論
- µ-LFV実験 (SIMDRUM II)
- µ-e転換過程探索実験
  - MECO, mu2e and PRISM/Phase-1
  - PRISM/Phase-1 @ J-PARC
- ・まとめ

## Lepton Flavor Mixing

- Quark Mixing : Kobayashi-Maskawa Matrix
- Neutrino Mixing : Maki-Nakagawa-Sakata Matrix
- charged Lepton Mixing : not-yet-observed
  - charged Lepton Flavor Violation (c-LFV)
  - Neutrino-mixing predicts very small amount of c-LFV via higher order diagram; it is as small as practically impossible to observe in foreseeable future.



$$B(\mu \to e\gamma) = \frac{3\alpha}{32\pi} \sum_{i} \left| U_{\mu i} U_{ei}^* \frac{m_{\nu_i}^2}{M_W^2} \right|^2 \simeq 10^{-60} \left( \frac{m_{\nu}}{10^{-2} \,\mathrm{eV}} \right)^4$$

A. de Gouvea

• c-LFV = Physics beyond SM

#### c-LFVと超対称性

#### c-LFV slepton mixing



**SUSY** 

 $\begin{pmatrix} m_{\tilde{e}\tilde{e}}^2 & \Delta m_{\tilde{e}\tilde{\mu}}^2 & \Delta m_{\tilde{e}\tilde{\tau}}^2 \\ \Delta m_{\tilde{\mu}\tilde{e}}^2 & m_{\tilde{\mu}\tilde{\mu}}^2 & \Delta m_{\tilde{\mu}\tilde{\tau}}^2 \\ \Delta m_{\tilde{\tau}\tilde{e}}^2 & \Delta m_{\tilde{\tau}\tilde{\mu}}^2 & m_{\tilde{\tau}\tilde{\tau}}^2 \end{pmatrix}$ 

Physics of slepton mass matrix

#### Golden Trio



# Slepton Mixing Mechanism



PRISM/Phase-1 LoI (2006)

#### **Theoretical Predictions**

| Process                       | Current<br>Limit  | SUSY-GUT<br>level | Future            |
|-------------------------------|-------------------|-------------------|-------------------|
| $\mu N \rightarrow e N$       | 10 <sup>-13</sup> | 10 <sup>-16</sup> | 10-16,10-18       |
| $\mu \rightarrow e \gamma$    | IO-II             | IO <sup>-14</sup> | 10 <sup>-13</sup> |
| $\tau \rightarrow \mu \gamma$ | 10 <sup>-6</sup>  | 10 <sup>-9</sup>  | 10 <sup>-8</sup>  |





## LHC and c-LFV

- if LHC finds SUSY particle
  - Physics of slepton mass matrix will be strengthened.
  - Further exploration of SUSY structure (SUSY-GUT, SUSY-Seesaw) will become more important.
- if LHC does not find SUSY particle
  - high-intensity exp. comes forefront.





 $\mu - LFV$   $\mu \rightarrow e\gamma$   $\mu \rightarrow eee$   $\mu N \rightarrow eN$ 

### $\mu \rightarrow e\gamma, \mu \rightarrow eee, \mu N \rightarrow eN$

photonic

×X

c-LFVの一般的なラグランジアン

(A. de Gouvea, talk at Nufact'06)

 $+\frac{1}{\Lambda_{F}^{2}}(\overline{\mu_{L}}\gamma^{\mu}e_{L})(\overline{e_{L}}\gamma_{\mu}e_{L})$ 

 $+\frac{1}{\Lambda_{E}^{2}}(\overline{\mu_{L}}\gamma^{\mu}e_{L})(\overline{q_{L}}\gamma_{\mu}q_{L})$ 

 $\mathcal{L} = \left| \frac{m_{\mu}}{\Lambda 2} \overline{\mu}_R \sigma^{\mu\nu} e_L F_{\mu\nu} \right|$ 

 $\mu \rightarrow e\gamma \quad \mu \rightarrow eee \quad \mu N \rightarrow eN$ 

tree ×α

1-loop tree ---

I-loop --- tree

>non-photonic

#### µ-e Conversion

• Muonic Atom (IS state)

Muon Capture(MC)

 $\mu^- + (A, Z) \to \nu_\mu + (A, Z - 1)$ 

Muon Decay in Orbit (MDO)  $\mu^- \rightarrow e^- \nu \overline{\nu}$ 

• MC:MDO = 1:1000(H), 3:2(Al), 13:1(Cu) •  $\tau(\mu;Al) = 0.88 \ \mu s; \ \tau(\text{free-}\mu) = 2.2 \ \mu s$ 

nuclei

•  $\mu$ -e Conversion  $\mu^{-}(A, Z) \rightarrow e^{-} + (A, Z)$  Coherent Process

 $BR[\mu^{-} + (A, Z) \to e^{-} + (A, Z)] \equiv \frac{\Gamma[\mu^{-} + (A, Z) \to e^{-} + (A, Z)]}{\Gamma[\mu^{-} + (A, Z) \to \nu_{\mu} + (A, Z - 1)]}$ 

## Physics of µ-e Conversion

- SUSY-GUT, SUSY-seesaw (Gauge Mediated process)
  - BR =  $10^{-15} = BR(\mu \rightarrow e\gamma) \times O(\alpha)$
  - τ→lγ
- SUSY-seesaw (Higgs Mediated process)
  - BR =  $10^{-12} 10^{-15}$
  - τ→lη
- Doubly Charged Higgs Boson (LRS etc.)
  - Logarithmic enhancement in a loop diagram for μ<sup>-</sup>
     N → e<sup>-</sup>N, not for μ→e γ
    - M. Raidal and A. Santamaria, PLB 421 (1998) 250
- SUSY with R-parity Violation
- Leptquarks
- Heavy Z'
- Compositeness
- Multi-Higgs Models





#### Principal of Experiment

- Signal :  $\mu^- + (A,Z) \rightarrow e^- + (A,Z)$ 
  - A single mono-energetic electron
    - 100 MeV
    - Delayed : -1µS
- No accidental backgrounds
- Physics backgrounds
  - Muon Decay in Orbit (MDO)
    - $\Delta E_{e}=350 \text{ keV} (BR:10^{-16})$
  - Beam Pion Capture
    - $\pi^-+(A,Z) \rightarrow (A,Z^-I)^* \rightarrow \gamma_+(A,Z^-I)$
    - Prompt timing



 $\gamma \rightarrow e^+ e^-$ 

#### SINDRUM II





- Need more muons:
  - 10<sup>11</sup> μ<sup>-</sup>/s
  - J-PARC/MR + Solenoid  $\pi$  cap.
- Beam-induced prompt backgrouds:
  - Pulsed beam
  - Long Muon Beam Line
  - Detector rate might be too high:
    - Curved Solenoid Detector.

## MECO, PRISM and Phase-I

#### MECO BNL/AGS



#### MECO BNL/AGS



## Staging Strategy

#### On the evening before the MECO cancellation



## Staging Strategy

#### On the evening before the MECO cancellation



## After the MECO Cancellation

- mu2e(FNAL + xMECO)
  - Revive of MECO
  - After the shutdown of Tevatron
  - Parasite on SNuMI-2
    - 2012 ~
  - Renovate a Debuncher ring for beam bunching





## Staging of PRISM



Phase-I:BR<10<sup>-16</sup>

#### Full PRISM:BR<10<sup>-18</sup>

## Why Staging, why 10<sup>-18</sup>



L. Calibbi, A. Faccia, A. Masiero and S.K. Vempati PRD 74(2006) 116002



- Early Realization, Discovery
- Understand the phenomena in a real-world step by step; we may see something new in every step of factor 10 improvements
- Why 10<sup>-18</sup>, why full-PRISM
  - Covering almost entire parameter space
  - Study of interaction types
    - $T_{\mu}Al = 880 \text{ ns}, T_{\mu}Pb = 82 \text{ ns}$



R. Kitano, M. Koike, Y. Okada PRD 66(2002) 096002



### Phase-1 Overview



- Large µ yields
  - J-PARC/MR
    - only 60 kW out of 450kW
  - π-capture SC-solenoid
  - 10<sup>11</sup> μ/s (PSI:10<sup>8</sup> μ/s)
- Pulsed Proton Beam
  π-b.g. suppression
- Curved-solenoid detector
  - Lower detector rate
- Upgradability to PRISM
  - add Phase-Rotator-Ring

### Pulsed Proton Beam

## パルス陽子ビーム

・バックグランド

π<sup>-</sup>+(A,Z) → (A,Z<sup>-</sup>I)\* → γ+(A,Z<sup>-</sup>I), γ → e<sup>+</sup> e<sup>-</sup> : 一次陽子ビームに同期

µ<sup>-</sup> decay-in-flight, e<sup>-</sup> scattering, neutron streaming
信号

µ<sup>-</sup> +(A,Z) → e<sup>-</sup> +(A,Z): 遅延(-1µs)



$$\begin{split} N_{bg} &= N_{P} \times R_{ext} \times Y_{\pi/P} \times A_{\pi} \times P_{\gamma} \times A \\ N_{P} : \text{total } \# \text{ of protons } (-10^{21}) \\ R_{ext} : Extinction Ratio (10^{-9}) \\ Y_{\pi/P} : \pi \text{ yield per proton } (0.015) \\ A_{\pi} : \pi \text{ acceptance } (1.5 \times 10^{-6}) \\ P_{\gamma} : \text{Probability of } \gamma \text{ from } \pi (3.5 \times 10^{-5}) \\ A : \text{ detector acceptance } (0.18) \\ \hline BR = 10^{-16}, N_{bg} < 0.12 \\ \Leftrightarrow \text{ Extinction } < 10^{-9} \end{split}$$

Extinction: < 10<sup>-9</sup> Power: 60 kW (4×10<sup>13</sup> pps@8 GeV)

# J-PARC



- LINAC
  - 0.4 GeV
  - $4\pi$  mm.mrad
- RCS
  - Painting: 300 times
     144π mm.mrad
  - Extraction: <81π mm.mrad
- MR
  - Injection: 81π mm.mrad
  - Extraction: 10π mm.mrad
    @ 30 GeV

adiabatic dumping

## Bunching Scheme @ J-PARC

- Tomizawa Scheme
- RCS : h=2 w/ empty bucket
- MR : Empty bucket Scheme
  - h=9 or h=8
- Bunched Slow Extraction







Extinction (1st test) •Inter buchet: 10-6 •Empty bucket: 10-3 2nd test (7.4GeV): 10-7 Transitionによる悪化? J-PARC/MR: Transition 無

## 空バケツの作り方



#### Emittance Control

- Adiabatic dumping  $\propto 1/\beta\gamma$ 
  - NP-Hall Acceptance:  $10\pi(24\pi)$  mm.mrad
    - 30 GeV:  $10\pi \rightarrow 8$  GeV:  $34\pi!!??$
  - Vertical: Reduce RCS painting area
  - Horizontal: 遅い取り出しならば < 5π mm.mrad
- in Tomizawa Scheme
  高加速繰返し
  - 低バンチ当たり粒子数:低 space charge
  - •小RCS painting area、小3-50BT・MRコリメータ

#### Tomizawa Scheme

8GeV extraction 7μA, 56kW RCS: h=1, 1banch MR: h=9, 4batch, 4banch



#### Slow Extraction

0.16x10<sup>14</sup> ppb (1/2.6 of designed 0.4125x10<sup>14</sup> ppb)

144π (0.4GeV) -> 36π (3GeV) ->15π (8GeV)
 RCS tune shift -0.046

•93π (0.4GeV) -> 23π (3GeV) ->10π (8GeV) RCS tune shift -0.072

#### Extra Extinction Devices



#### External Extinction Dev. •AC-dipole •f<sub>extinction</sub> ~ 1/100

#### Bunch Cleaner •AC-dipole •Fast Kicker 場所はある@J-PARC/MR

#### **AGS Internal Extinction**

BROOKHAVEN

- Stripline AC dipole at 80 kHz excites coherent vertical betatron resonance
- · Fast (100 ns) kickers cancel AC dipole at the bunches
- Kicker duty factor is low 100 ns / 2.7µs = 4%

 Concept tested in FY98 using existing AC dipole and kickers
 Filled Bunches
 AC Dipole Signal
 Fast Kicker Pulses

### Muon Beam Line

### Pion Production



• Pion Production Target

- Graphite : 60cm<sup>L</sup>, 4cm<sup>\$\$\$</sup>
- 2 kW energy dissipation for 56 kW
- He gas cool



#### MELC, MECO idea

- Backward Extraction
  - Reduce high-p  $\pi$ -b.g.
  - Reduce heat-load to solenoids

## Pion Capture



µ-yield vs. B<sub>max</sub>



•  $p_t \rightarrow p_l$ 

- Parallel beam for p selection downstream
- yields : 0.05  $(\pi+\mu)$ /proton

## **π**-Solenoid



density: 4.0 g/cm<sup>3</sup>

NbTi/Cu

- Heat Load
  - 2 kW@ target
  - 35 kW@W Shield
- $\Delta E$  density : 2 × 10<sup>-5</sup> W/g behind W shield
  - 20cm-Cu SC coil : 1 kW MECO design
- Design goal < 100 W</li>
  2 × 3cm-Al SC coil : 10 W
  B = 5T, D = 300mm
  12.3 MJ, 12.5 kJ/kg



#### Muon Beamline

Guide π's until decay to µ's
Suppress unwanted particles
µ's : pµ< 75 MeV/c</li>
e's : pe < 100 MeV/c</li>

## Vertical Drift in Torus $D[m] = \frac{1}{0.3 \times B[T]} \times \frac{s}{R} \times \frac{p_l^2 + \frac{1}{2}p_t^2}{p_l}$





## **Compensative Vertical B**









### Muon Beamline Optimization



- Compensative Vertical B
  0.038 T and 0.052 T
- R = 175 mm
  - L = 15 m (baseline)
  - <u>yields : 0.002 μ's/proton</u>
    0.0002 (p<sub>μ</sub> > 75 MeV/c)
    10<sup>-5</sup> π's/proton



#### Detector

## Curved Solenoid Spectrometer







Curved Solenoid

### Curved Solenoid Spectrometer



Muon momentum dist.



Moderate µ-Stopping €
€=0.29 (Geant4 MC)
0.0007 µ-stops/proton
Compensative vertical B
Select 105 MeV e<sup>-</sup>



## Muon Stopping Target

- Light material for delayed measurement
  - Aluminum :  $T_{\mu}^{-} = 0.88 \ \mu s$
- Thin disks to minimize energy loss in the target
  - $R = 100 \text{ mm}, 200 \mu \text{m}^t, 17 \text{ disks}, 50 \text{ mm spacing}$
- Graded B field for a good transmission in the downstream curved section.





### Electron Transmission

Use torus drift for rejecting low energy DIO electrons.
rejection : 10<sup>-7</sup>-10<sup>-8</sup>, < 1kHz</li>
Good acceptance for signal e's
30-40%





Transmission efficiency



#### **Electron Detector**







### Cosmic Ray Veto

- Passive Shield
- Active Shield
  - Double layers of scintillator: 99% each
- 計測時間に比例
  - やばくなったらスピル長を縮める。



## Detector Acceptance & Signal Sensitivity

|                    | Acceptance |
|--------------------|------------|
| Geometrical Acc.   | 0.73       |
| Electron Transport | 0.44       |
| Energy Selection   | 0.68       |
| pt > 90 MeV/c      | 0.82       |
| Timing cut         | 0.38       |
| Total              | 0.07       |



$$B(\mu^{-} + Al \to e^{-} + Al) = \frac{1}{N_{\mu} \cdot f_{\text{cap}} \cdot A_{e}}$$

| Proton Intensity      | 4 × 10 <sup>13</sup> Hz            |  |
|-----------------------|------------------------------------|--|
| Running Time          | 2 × 107 sec                        |  |
| µ's yields per proton | 0.0024                             |  |
| µ-stopping efficiency | 0.29                               |  |
| Total                 | 5.6 × 10 <sup>17</sup> stopped µ's |  |

• 
$$N_{\mu} = 5.6 \times 10^{17}$$
  
•  $f_{cap} = 0.6$  for Aluminum  
•  $A_e = 0.07$   
•  $B(\mu^- + Al \rightarrow e^- + Al) = 4 \times 10^{-17}$   
 $< 10^{-16} (90\% C.L.)$ 

# Background

Background estimates for 10<sup>-16</sup> \*: assuming the extinction 10<sup>-9</sup>

| Background                                  | Events  | Comments                         |
|---------------------------------------------|---------|----------------------------------|
| Muon decay in orbit                         | 0.05    | 230 keV (sigma) assumed          |
| Pattern recognition rrrors                  | < 0.001 |                                  |
| Radiative muon capture                      | < 0.001 |                                  |
| Muon capture with neutron emission          | < 0.001 |                                  |
| Muon capture with charged particle emission | < 0.001 |                                  |
| Radiative pion capture <sup>*</sup>         | 0.12    | prompt pions                     |
| Radiative pion capture                      | 0.002   | due to late arriving pions       |
| Muon decay in flight <sup>*</sup>           | < 0.02  |                                  |
| Pion decay in flight <sup>*</sup>           | < 0.001 |                                  |
| Beam electrons <sup>*</sup>                 | 0.08    |                                  |
| Neutron induced <sup>*</sup>                | 0.024   | for high energy neutrons         |
| Antiproton induced                          | 0.007   | for 8 GeV protons                |
| Cosmic rays induced                         | 0.04    | with $10^{-4}$ veto inefficiency |
| Total                                       | 0.34    |                                  |

#### Straw-man's Layouts



### Toward full PRISM



#### Phase-1:R<10-16

#### Full PRISM:R<10<sup>-18</sup>

Same Beam line, Detector
Replace Target & π-Cap. Solenoid
Add FFAG Phase -Rotator
Fast-Extracted Proton Pulse

### Full PRISM at NP-Hall

Fast Extraction (to NP-Hall) Scheme exist

- Add 2 kickers
- Slow bump ON, E Septum OFF, M Septum all ON
- Need more study, but promising.



Precise measurement
Target A dependency
Interaction type
By-products

## MECO,mu2e and Phase-I

|               | MECO              | mu2e           | Phase-1                             |
|---------------|-------------------|----------------|-------------------------------------|
| Machine       | BNL/AGS           | FNAL/Debuncher | J-PARC/MR                           |
| Energy        | 7.5 GeV/c         | 8 GeV/c        | 8 GeV/c                             |
| Pulse         | 1.4 µs            | 1.7 µs         | 1.1 µs                              |
| Extraction    | Bunched Slow      | -              | ←                                   |
| Target        | Tungsten          | +              | Graphite                            |
| Muon Beamline | Curved Solenoid   | -              | Curved Solenoid<br>+ Vertical Field |
| µ stop        | 1011 muons/s      | +              | 1011 muons/s                        |
| Detector      | Straight          | +              | Curved                              |
| Rate          | 500 kHz/wire      | +              | 300 DIO tracks/s                    |
| Sensitivity   | IO <sup>-16</sup> | -              | ←                                   |
| Upgradability | NO                | Project-X      | PRISM(10 <sup>-18</sup> )           |

Japan & Fermilab:

Collaboration work on pulsed-proton beam AC-dipole, Extinction Monitor, etc.

### まとめ

- $\mu$ -e電子転換過程はc-LFVの一つであり、 $\mu$ →eγや  $\mu$ →eeeと共に重要なテーマである。
- ・LHCの後でもその重要に違いは無い。
- BR=10<sup>-16</sup> での µN→eN をJ-PARCで実行するべく準備 中である。
  - LoI提出済み:P21
  - 現在プロポーザル準備中

 web page: http://nasubi.hep.sci.osaka-u.ac.jp:8080/prime/
 コラボレーターを募集しています。一緒にµN→eN をやりませんか。

## End of Slides