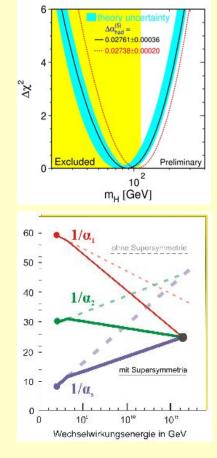

The Search for Higgs and SUSY

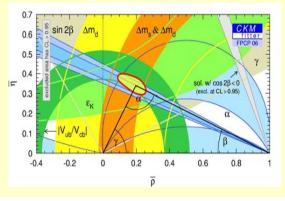
-From the Tevatron to the LHC-

Introduction

- Status of accelerators and detectors
- Search for Supersymmetry
 - Status and prospects at the Tevatron
 - The LHC potential
- Where is the Higgs boson ?

Karl Jakobs Physikalisches Institut Universität Freiburg / Germany


Key Questions of Particle Physics


1. **Mass:** What is the origin of mass?

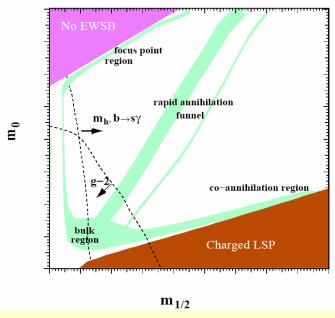
- How is the electroweak symmetry broken ?
- Does the Higgs boson exist?
- 2. Unification: What is the underlying fundamental theory ?
 - Motivation: Gravity not yet included; Standard Model as a low energy approximation
 - Is our world supersymmetric ?
 - Are there extra space time dimensions ?
 - Other extensions ?

3. Flavour: or the generation problem

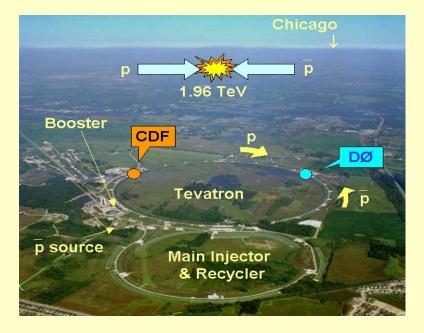
- Why are there three families of matter?
- Neutrino masses and mixing?
- What is the origin of CP violation?

The role of Hadron Colliders

1. Mass


- Search for the Higgs boson

- 2. Unification
 - Test of the Standard Model
 - Search for Supersymmetry
 - Search for other Physics Beyond the SM

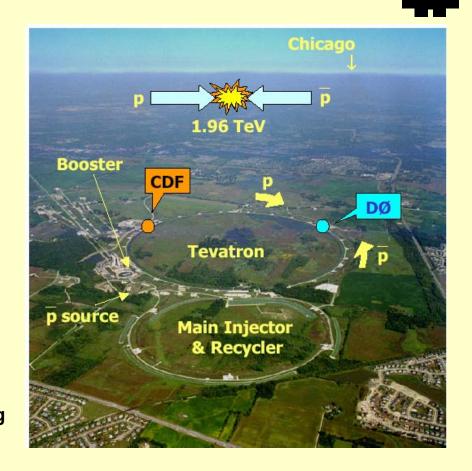

3. Flavour

- B hadron masses and lifetimes
- Mixing of neutral B mesons
- CP violation

The link between SUSY and Dark Matter ?

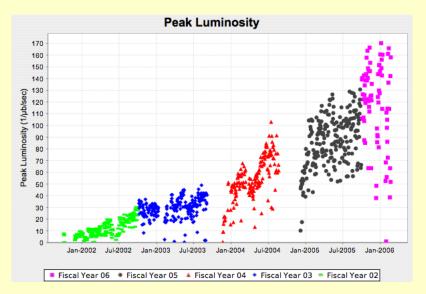
M. Battaglia, I. Hinchliffe, D.Tovey, hep-ph/0406147

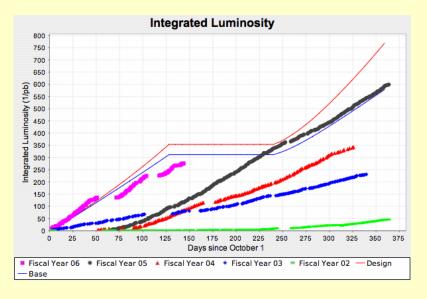
Accelerators and Detectors


The Tevatron Collider at Fermilab

Proton antiproton collider 2 Experiments: CDF and DØ

- * 1992 1996: Run I, √s = 1800 GeV
 6 x 6 bunches, 3 μs spacing
 ∫ L dt = 125 pb ⁻¹
- * 1996 2001: upgrade programme
 Accelerator: new injector (x5)


 antiproton recycler (x2)
 36x36 bunches, 396 ns spacing


+ Detectors

* Since March 2001:Run II a,√s = 1960 GeV,1.2 fb⁻¹* 2006 - 2009:Run II b,√s = 1960 GeV,5 - 8 fb⁻¹

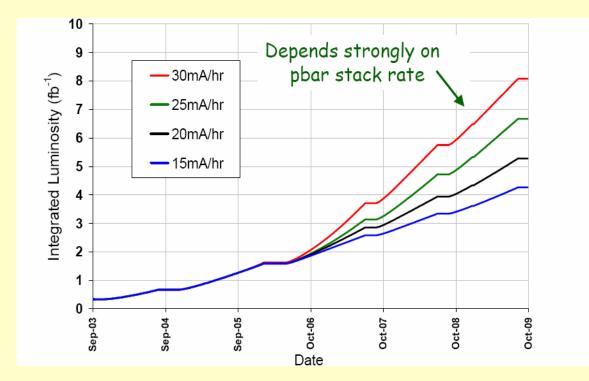
Status of data taking

 Steady increase in instantaneous luminosity with time (after a very slow start-up)

A few milestones:

July 04: Anti-p in the recycler new record: $L = 1.0 \ 10^{32} \ cm^{-2} \ s^{-1}$

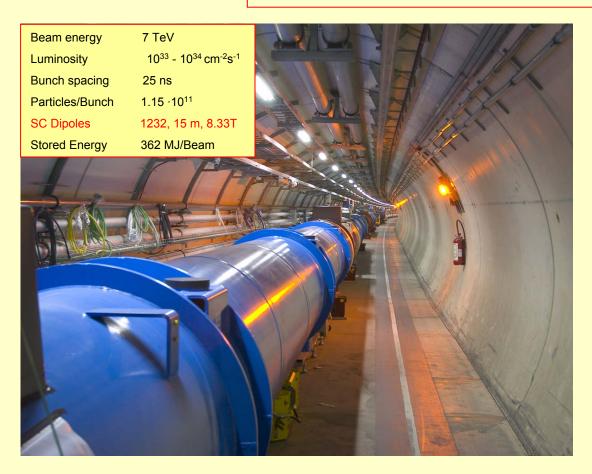
Data taking period 2005: design luminosity reached/surpassed


Jan 06: highest luminosity: L=1.7 10^{32} cm⁻² s⁻¹

Shutdown since March 2006
Improvements to the <u>machine</u>
(add. electron cooling in the recycler, factor 2 in luminosity)

and <u>detectors</u> (mainly trigger upgrade, and silicon b-layer)

Tevatron Luminosity projections

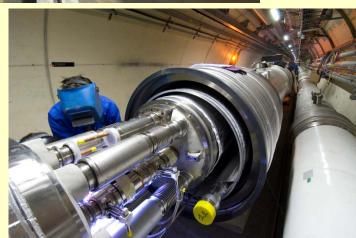

Tevatron running scheduled (at present) until end of Oct. 2009

final performance depends strongly on pbar stacking rate in the accumulator (at present 20 mA/h = $0.2 \cdot 10^{12}$ pbar /h) $\rightarrow 5 \text{ fb}^{-1}$

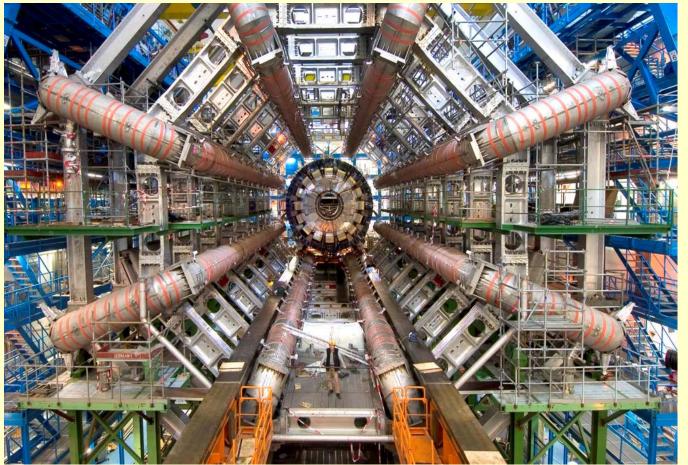
goal: = $0.3 \cdot 10^{12}$ pbar/h $\rightarrow 8$ fb⁻¹

Status of the LHC machine

- Key components available
- Installation progressing in parallel and at high speed; aim to finish by end March 2007
- "Every effort is being made to have first collisions by end of 2007"


<u>A "likely" startup scenario</u>:
 Late 2007: Proton run ~ 10 - 100 pb⁻¹ (for 10 pb⁻¹: number of tt events comparable to Tevatron with 1 fb⁻¹)
 → detector and trigger commissioning, calibration, early physics
 By end 2008: Physics runs: ~ 1 - 10 fb⁻¹

Preparation for installation, Hall SMI2

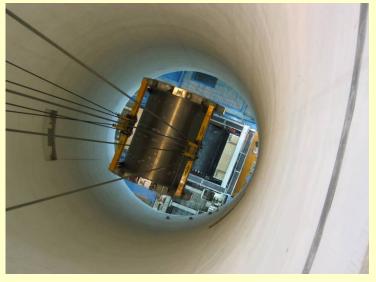


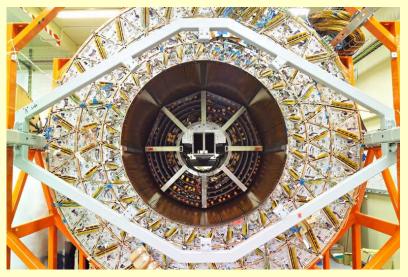
Installation work, underground

ATLAS Installation

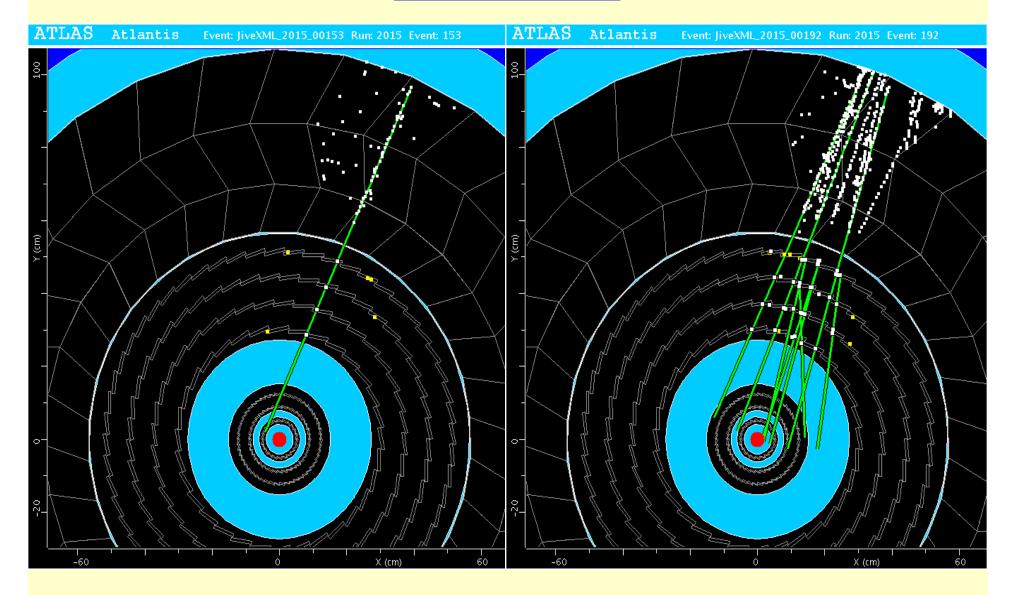
November 2005

- Impressive progress! Nearly all detector components at CERN;
- Installation in the pit proceeding well, although time delays, work in parallel to catch up;
- On critical path: Installation of Inner detector services and forward muon wheels (time);
- ATLAS expected to be ready in August 2007 ... one more tough year ...


.... a few ATLAS pictures


Insertion of the solenoid in the calorimeter cryostat (Japan-ATLAS contribution)

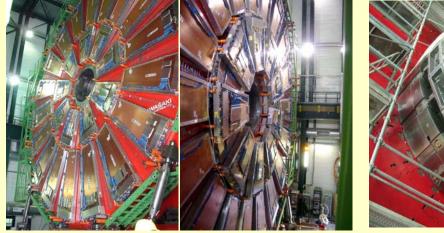
TGC assembly at CERN (Japan-ATLAS contribution)



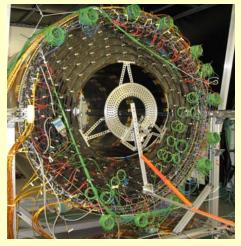
Lowering of ECAL into the ATLAS cavern

Insertion of the Silicon Tracker (barrel) in the TRT (February 2006), (Japan-ATLAS contribution)

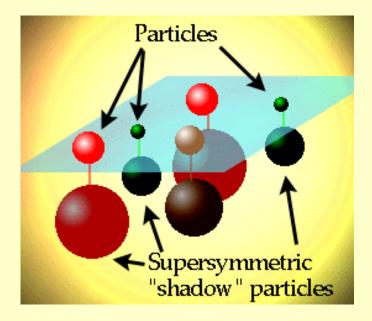
The first tracks in the ATLAS detector -cosmic particles-



CMS Installation


Coil inserted, 14. September

Cathode Strip chambers and yoke endcaps


Hadronic calorimeter, endcap

Tracker, outer barrel

On critical path: ECAL crystal delivery (Barrel: Feb. 07, Endcaps: Jan. 08) Pixel installation for 2008 physics run.

The Search for

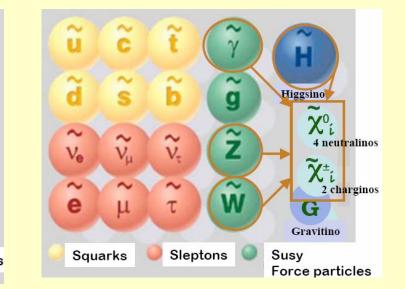
Supersymmetry

Supersymmetry

Extends the Standard Model by predicting a new symmetry Spin $\frac{1}{2}$ matter particles (fermions) \Leftrightarrow Spin 1 force carriers (bosons)

 Ve
 Vu
 Vr
 G

 Output
 Control
 G


 Output
 Control
 G

 Output
 Control
 Control

 Output
 Control
 Control

Standard Model particles

SUSY particles

New Quantum number: R-parity: $R_p = (-1)^{B+L+2s} = +1$ SI

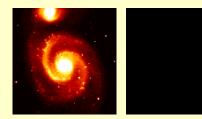
+1 SM particles-1 SUSY particles

<u>R-parity conservation:</u>

- SUSY particles are produced in pairs
- The lightest SUSY particle (LSP) is stable

Why do we like SUSY so much?

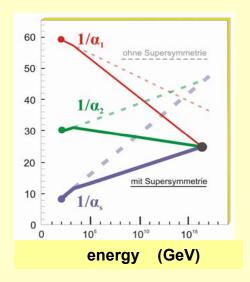
1. Quadratically divergent quantum corrections to the Higgs boson mass are avoided

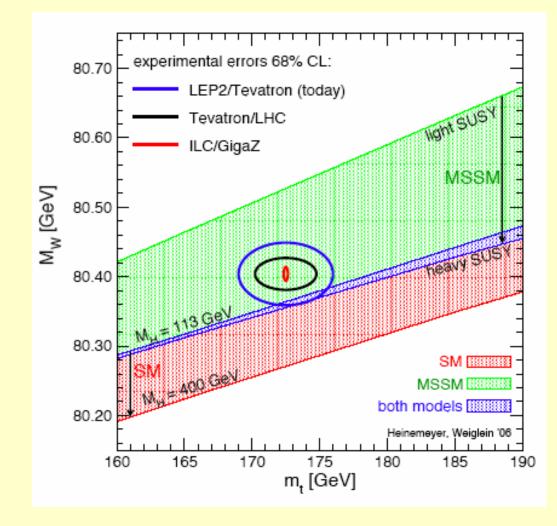

(Hierarchy or naturalness problem)

Korrekturen (Λ²)

θ

•----•

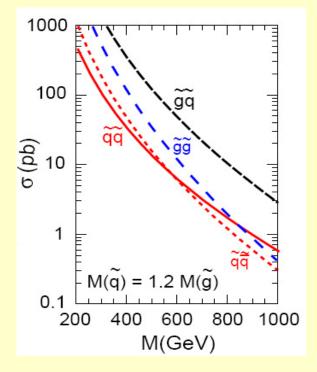

- 2. Unification of coupling constants of the three interactions seems possible
- 3. SUSY provides a candidate for dark matter,


The lightest SUSY particle (LSP)

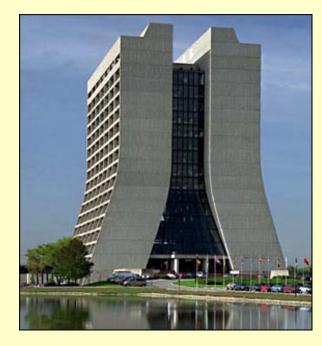
 $\Delta m_H = f(m_B^2 - m_f^2)$

4. A SUSY extension is a small perturbation, consistent with the electroweak precision data

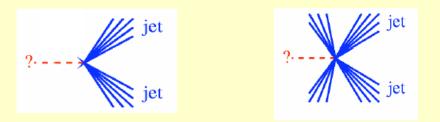
M_w and m_{top} vs. SM and SUSY predictions


SUSY Production at Hadron Colliders

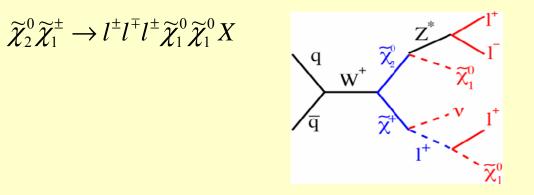
- The SUSY cross-sections at Hadron Colliders are dominated by the associated strong production of gluinos and squarks.
 - Decays via cascades into the LSP $\int_{a}^{(q)} \int_{a}^{(q)} \int_{a}^$
 - + Missing transverse energy (E_T^{miss})
 - + Leptons


٠

 Huge background from QCD jet production can be suppressed (E_T^{miss}, Leptons...)



The Search for SUSY at the Tevatron

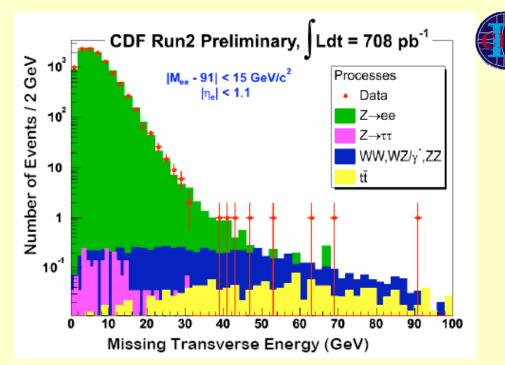


The two classical signatures

 Search for Squarks and Gluinos: Jet + E_T^{miss} signature produced via QCD processes

2. Search for Charginos and Neutralinos: Multilepton + E_T^{miss} signature produced via electroweak processes (associated production)

A few detector performance issues at the Tevatron


- Basic signatures needed for the SUSY and Higgs searches:
 - Lepton Identification (e, μ , and τ (hadronic decays))

however, still restricted to the central detector region for most analyses

- Measurement and calibration of missing transverse energy E_T^{miss}
- The tagging of **b**-quarks

(i) Missing transverse energy

• Checks have been made on QCD di-jet and $Z \rightarrow \ell \ell$ samples

- Good description, including tails of the distribution
- Contributions from physics processes to large E_T^{miss} : WW,WZ and ZZ production

tt production

+ fake contributions from:

lepton or jet mismeasurements, instrumental effects, mismeasurement of the vertex

 \rightarrow rejection by applying special cuts

(ii) The tagging of b-quarks

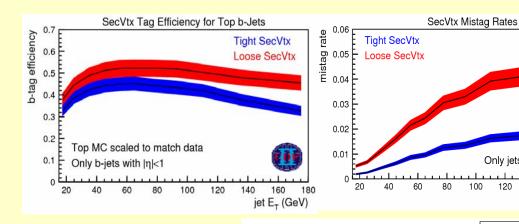
Light jets

b-jets

- Both collaborations (CDF and DØ) use • similar methods:
 - Lifetime tags

IP significance

10⁻¹

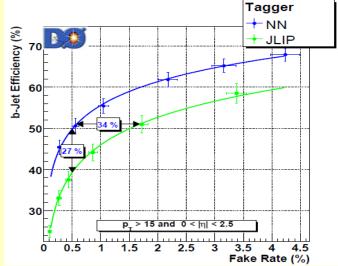

10-2

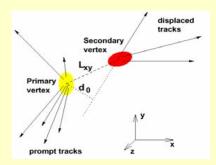
10

-10

3

- Secondary vertex tags




+ Combination of both, using multivariate techniques, e.g. neural networks

8

Input variables:

vertex mass, impact parameter significance, χ^2 , jet track multiplicities (displaced + total), jet probability;

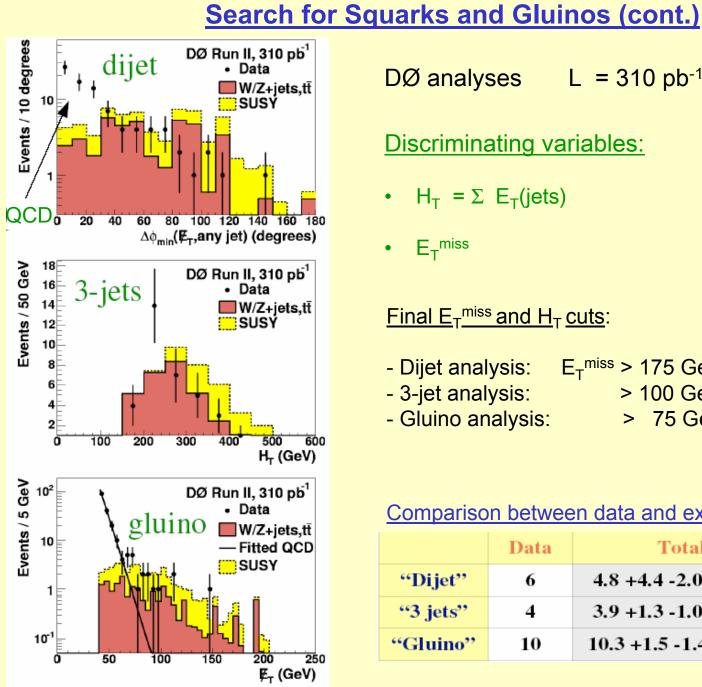
Only jets with |n|<1

140

160 180

jet E_⊤ (GeV)

120


- Three different analyses, depending on squark / gluinos mass relations:
 - (i) dijet analysis small m₀, m(squark) < m(gluino)
 - (ii) 3-jet analysis intermediate $m_0 m(squark) \approx m(gluino)$
 - (iii) Gluino analysis large m₀, m(squark) > m(gluino)

 $\tilde{q}\,\bar{\tilde{q}}\to q\,\tilde{\chi}_1^0\,\bar{q}\,\tilde{\chi}_1^0$

 $\tilde{q}\,\tilde{g} \rightarrow q\,\tilde{\chi}_1^0 q\,\bar{q}\,\tilde{\chi}_1^0$

 $\tilde{g}\,\tilde{g} \to q\,\bar{q}\,\tilde{\chi}_1^0 q\,\bar{q}\,\tilde{\chi}_1^0$

- Main backgrounds: $Z \rightarrow vv + jets$, tt, W + jet production
- Event selection: 2 jets with $P_T^1 < 60$, $P_T^2 > 40$ GeV, $|\eta| < 0.8$ (common preselection) * require at least 2, 3 or 4 jets with $P_T > 60 / 40 / 30 / 20$ GeV
 - * confirm the jets by their associated tracks
 - * veto on isolated electrons and muons
 - * isolation of P_T^{miss} and all jets
 - * optimization of the final cuts \rightarrow discriminating variables

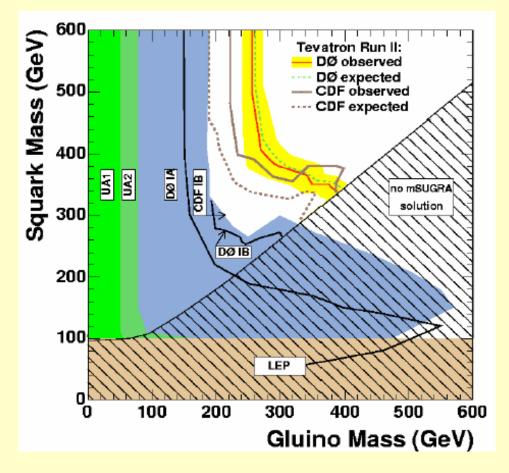
DØ analyses $L = 310 \text{ pb}^{-1}$

Discriminating variables:

- $H_T = \Sigma E_T(jets)$ •
- $E_{\mathsf{T}}^{\mathsf{miss}}$

Final E $_{T}$ ^{miss} and H $_{T}$ cuts:

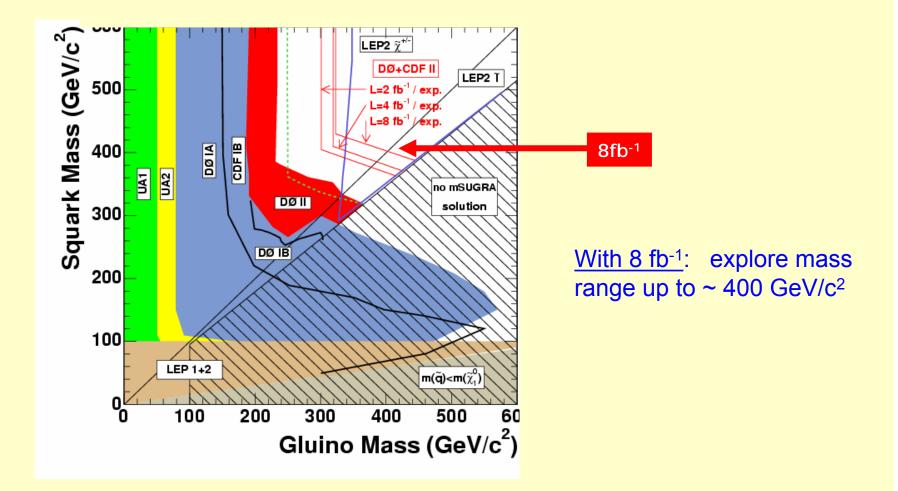
- Dijet analysis:	E_T^{miss} > 175 GeV,	H _T > 250 GeV
- 3-jet analysis:	> 100 GeV,	> 325 GeV
- Gluino analysis:	> 75 GeV,	> 250 GeV


Comparison between data and expected background:

	Data	Total background	
"Dijet"	6	4.8 +4.4 -2.0 (stat) +1.1 -0.8 (sys)	
"3 jets"	4	3.9 +1.3 -1.0 (stat) +0.7 -0.8 (sys)	
"Gluino"	10	10.3 +1.5 -1.4 (stat) +1.9 -2.5 (sys)	

Excluded regions in the m(squark) vs. m(gluino) plane

Excluded mass values:

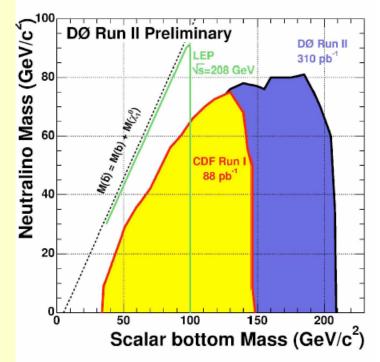

m(gluino), m(squark) > ~ 330 GeV for equal masses

Comparable result from the CDF Experiment (preliminary result, 378 pb⁻¹)

major systematic uncertainties:

- renormalization scale vary m(gluino)/2 < μ < 2 m(gluino) -
- parton density functions (gluon distribution at large x) qg-processes
- jet energy scale,....

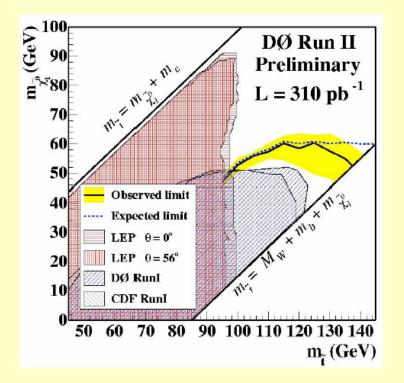
Future Prospects for Squark and Gluino Searches


Search for Sbottom

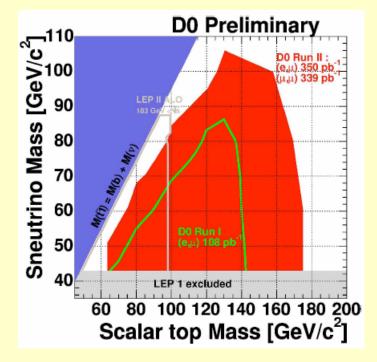
- Lightest sbottom are pair produced and decay via $\tilde{b}_1 \rightarrow b \tilde{\chi}_1^0$
 - → search for acoplanar quark pair, E_T^{miss} , apply b-tagging note: difficult for small mass difference ΔM (between sbottom and LSP)
- Comparison between data and expectations, cuts optimized for different mass combinations

	(140,80) GeV	(160,75) GeV	(205,60) GeV
Data	36	15	2
Back.	38.6 ± 2.8	19.6 ± 1.7	4.40 ± 0.44
Signal	35.0 ± 1.2	21.6 ± 0.7	6.10 ± 0.17

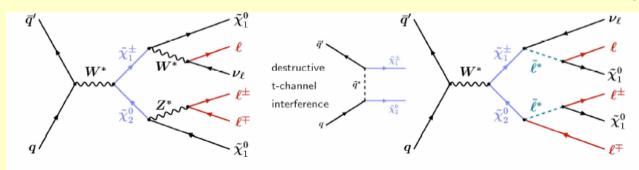
Excluded region:


Search for Stop

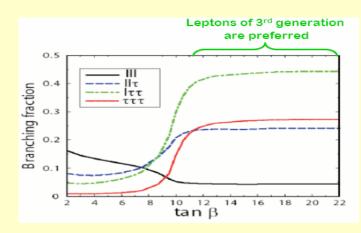
• Stop quarks are searched in various decay modes:

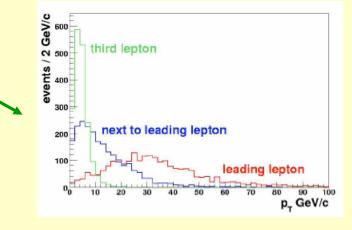

 $\tilde{t}_1 \rightarrow c \tilde{\chi}_1^0$

(difficult, requires c-tagging)

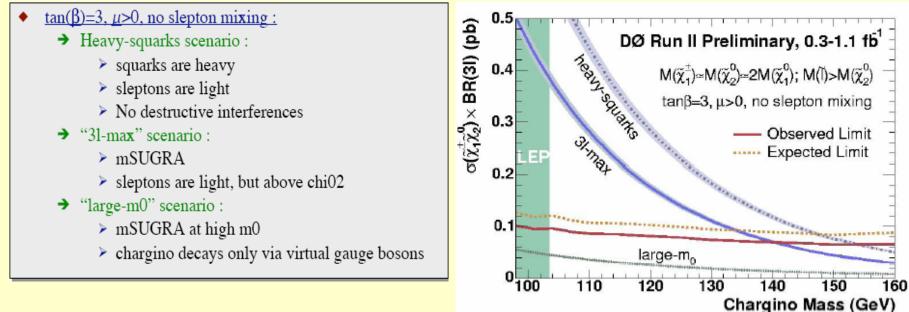

$\tilde{t}_1 \rightarrow b l \tilde{v}$

(di-lepton + Etmiss + btag signature)




Search for Charginos and Neutralinos - the tri-lepton channel-

 Gaugino pair production via electroweak processes (small cross sections, ~0.1 – 0.5 pb, however, small expected background)

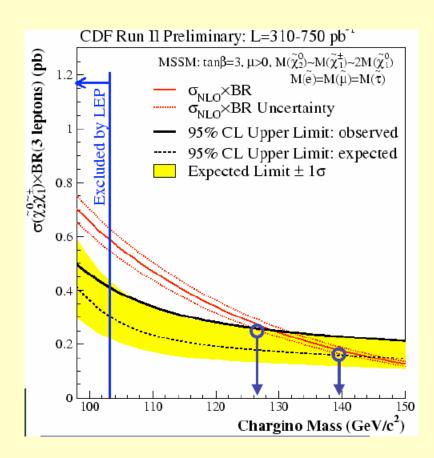

- For small gaugino masses (~100 GeV/c²) one needs to be sensitive to low P_T leptons
- For large tan β : tau decays are important !

Analysis:

- Search for five different (*lll*) + like-sign $\mu\mu$ final states with missing transverse momentum
- In order to gain efficiency, no lepton identification is required for the 3rd lepton, select: two id. Leptons + a track with P_T > 4 GeV/c

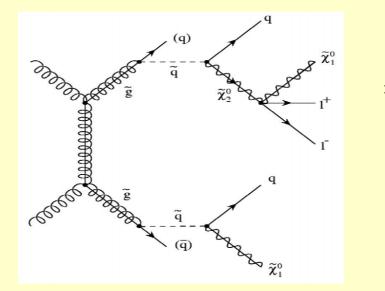
For specific scenarios: sensitivity / limits above LEP limits; e.g., $M(\chi^{\pm}) > 140 \text{ GeV/c}^2$ for the 3l-max scenario Excluded $\sigma \times BR$: 0.08 pb

mSUGRA interpretation



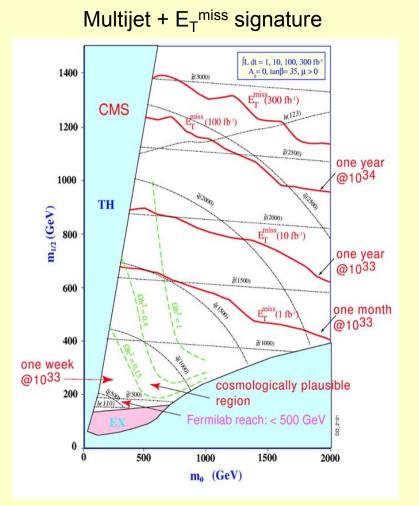
Trilepton results from CDF:

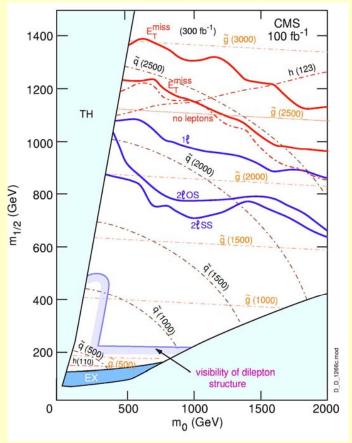
CHANNEL	LUM	TRIGGER PATH
e [±] e [±] ,e [±] μ [±] , μ [±] μ [±]	710	High p _T Single Lepton
μ <i>ℓ</i> + e/μ	750	High p _T Single Lepton
ee + e/μ	350	High p _T Single Lepton
μμ + e/μ	310	Low p _T Dilepton
ee + track	610	Low p _T Dilepton —


Analysis	Lumin osity (pb ⁻¹)	Total predicted background	Example SUSY Signal	Obs- erved data
e*e*,e*μ*, μ*μ*	710	6.80±1.00	3.18±0.33	9
μμ +e/μ (low-p _T)	310	0.13±0.03	0.17±0.04	0
ee+track	610	0.48±0.07	0.90±0.09	1
ee + e/µ	350	0.17±0.05	0.49±0.06	
μ μ +e/ μ	750	0.64±0.18	1.61±0.22	1
μ e + e/μ	750	0.78±0.15	1.01±0.07	

mSUGRA scenario, tan β = 3, μ >0, no mixing, m(sleptons) ~ m(χ_2)

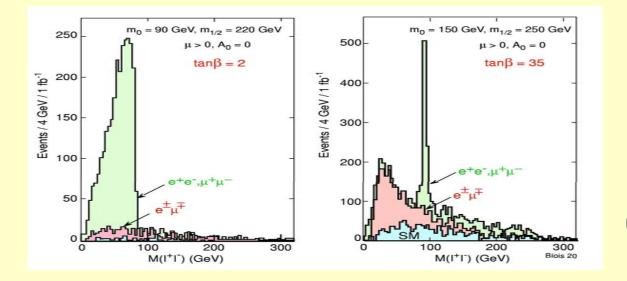
Chargino Mass limit: $m(\chi^{\pm}) > 127 \text{ GeV/c}^2$ Excluded $\sigma x \text{ BR}$ (95%CL)0.25 pb


Search for Supersymmetry at the LHC

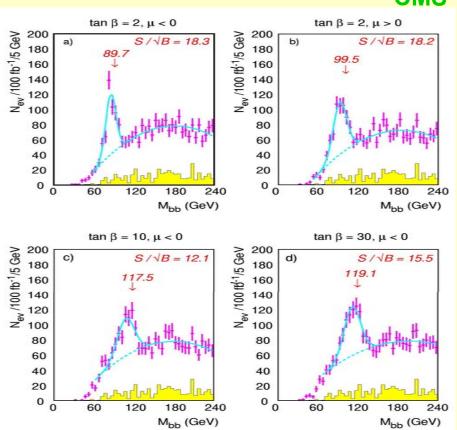

⇒ Combination of Jets, Leptons, E_T^{miss}

- 1. Step: Look for deviations from the Standard Model Example: Multijet + E_T^{miss} signature
- 2. Step: Establish the SUSY mass scale use inclusive variables, e.g. effective mass distribution
- 3. Step: Determine model parameters (difficult) Strategy: select particular decay chains and use kinematics to determine mass combinations

LHC reach in the m₀ - m _{1/2} mSUGRA plane:


SUSY cascade decays give also rise to many other inclusive signatures: **leptons**, **b-jets**, τ 's

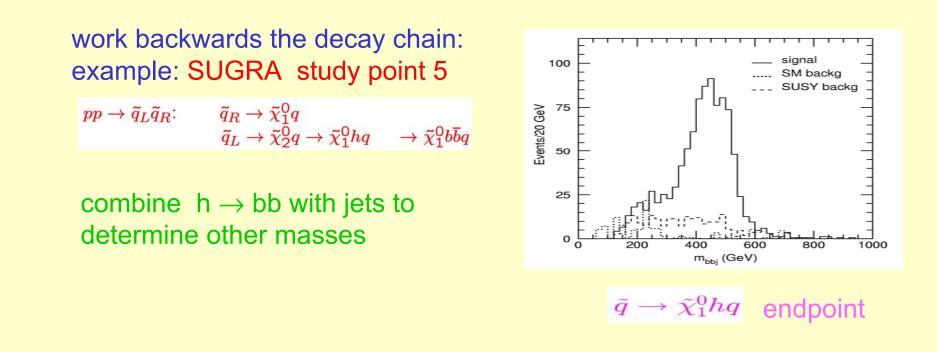
Expect multiple signatures for TeV-scale SUSY


Determination of model parameters

- Invisible LSP ⇒ no mass peaks, but kinematic endpoints
 ⇒ mass combinations
- Simplest case: $\chi_{2}^{0} \rightarrow \chi_{1}^{0} \ell^{+} \ell^{-}$ endpoint: $M_{\ell\ell} = M(\chi_{2}^{0}) M(\chi_{1}^{0})$ (significant mode if no $\chi_{2}^{0} \rightarrow \chi_{1}^{0}Z, \chi_{1}^{0}h, \ell \ell$ decays)
- Require: 2 isolated leptons, multiple jets, and large E_T^{miss}

Modes can be distinguished using shape of $\ell\ell$ -spectrum

 $h \rightarrow bb:$



CMS

important if $\chi_2^0 \rightarrow \chi_1^0 h$ is open; bb peak can be reconstructed in many cases

Could be a Higgs discovery mode !

SM background can be reduced by applying a cut on E_{T}^{miss}

- Search for multijet + E_T^{miss} excess
- If found, select SUSY sample (simple cuts)
- Look for special features (γ 's , long lived sleptons)
- Look for ℓ^{\pm} , ℓ^{+} ℓ^{-} , ℓ^{\pm} ℓ^{\pm} , b-jets, τ 's
- End point analyses, global fit

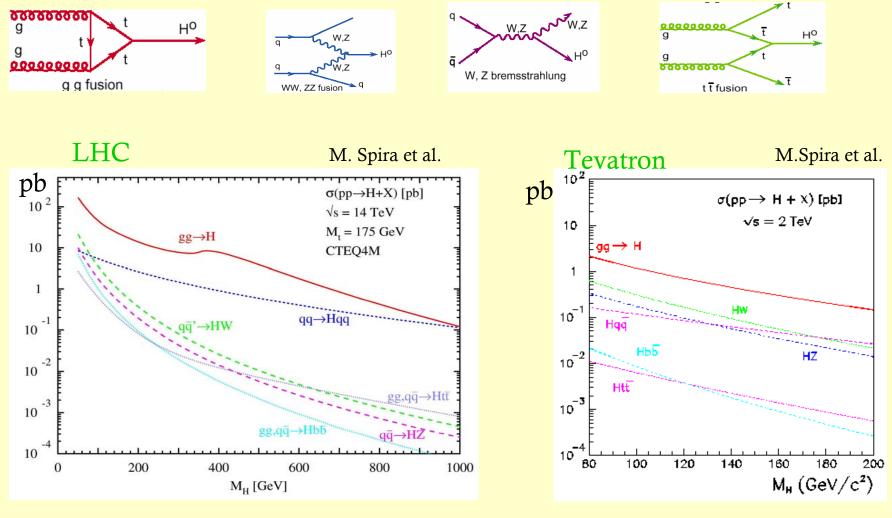
Models other than SUGRA

GMSB:

- LSP is light gravitino
- Phenomenology depends on nature and lifetime of the NLSP
- Generally longer decay chains, e.g. $\tilde{\chi}_2^0 \rightarrow \tilde{\ell}^{\pm} \ell^{\mp} \rightarrow \tilde{\chi}_1^0 \ell^+ \ell^- \rightarrow \tilde{G} \gamma \ell^+ \ell^-$
- \Rightarrow models with prompt NLSP decays give add handles and hence are easier than SUGRA
- NLSP lifetime can be measured:
 - For $\tilde{\chi}_1^0 \to \tilde{G}\gamma$, use Dalitz decays (short lifetime) or search for non-pointing photons
 - Quasi stable sleptons: muon system provides excellent "Time of Flight" system

RPV :

- R-violation via $\chi^0_1 \to \ell \ell \nu$ or $qq\ell$, $qq\nu$ gives additional leptons and/or E_T^{miss}
- R-violation via $\chi^0_1 \rightarrow$ cds is probably the hardest case; (c-tagging, uncertainties on QCD N-jet background)


Where is the

Higgs Boson ?

Higgs Boson Production cross sections at NLO

 $\begin{array}{ll} qq \rightarrow W/Z + H & cross \ sections \\ gg \rightarrow H \end{array}$

~10 x larger at the LHC ~70-80 x larger at the LHC

Gluon fusion dominates at both colliders, W/Z H associated production is more important at the Tevatron

Some important comments:

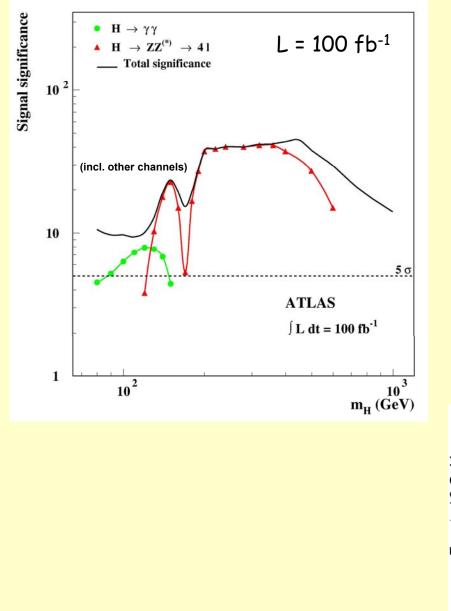
- Computation of NLO cross sections: huge theoretical effort !!
- So far, LHC experimentalists (at least from one experiment) have refrained from systematically using these higher order corrections ("no K factors")

main arguments: K-factors are not known for all background processes,

 \rightarrow consistent treatment between signal and background, most likely a conservative approach

- New Tools \rightarrow Experimentalists are about to use/familiarize + validate them:
- (i) New (N)NLO Monte Carlos (also for backgrounds):
 - MCFM Monte Carlo, J. Campbell and K. Ellis, http://mcfm.fnal.gov
 - MC@NLO Monte Carlo, S.Frixione and B. Webber, www.web.phy.cam.ar.uk/theory/webber/MCatNLO
 - T. Figy, C. Oleari and D. Zeppenfeld, Phys. Rev. D68, 073005 (2003)
 - E.L.Berger and J. Campbell, Phys. Rev. D70, 073011 (2004)
 - C. Anastasiou, K. Melnikov and F. Petriello, hep-ph/0409088 and hep-ph/0501130 (differential cross sections

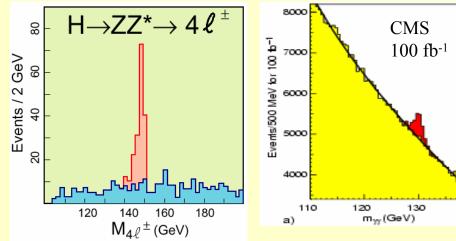
through NNLO)


(ii) New approaches to match parton showers and matrix elements: (some based on algorithm developed by Catani, Krauss, Kuhn and Webber (CKKW)*)

- ALPGEN Monte Carlo + MLM matching, M. Mangano et al.
- PYTHIA, adapted by S. Mrenna
- SHERPA Monte Carlo, F. Krauss et al., www.sherpa-mc.de

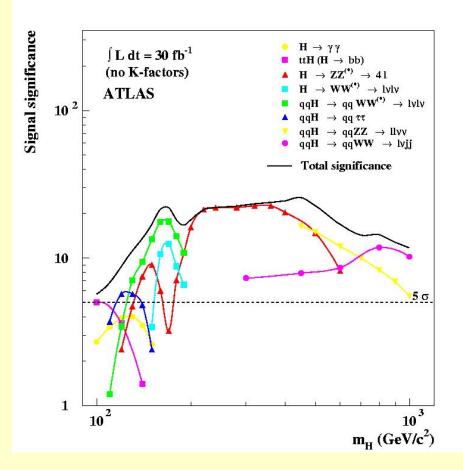
Tevatron data are extremely important for validation, work has started, see e.g., TeV4LHC workshops

*) S. Catani, F. Krauss, R. Kuhn, B. R. Webber, JHEP 0111 (2001) 063.



The full allowed mass range

from the LEP limit (~114 GeV/c²) up to theoretical upper bound of ~1000 GeV/c²


can be covered using the two "safe" channels

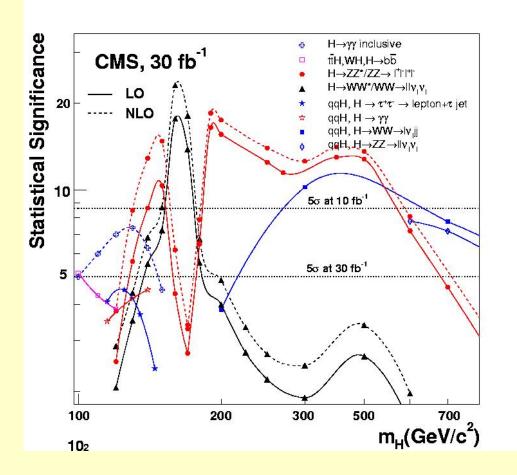
 $\begin{array}{l} \mathsf{H} \to \mathsf{ZZ} \to \ell \ell \ \ell \ell & \text{and} \\ \mathsf{H} \to \gamma \gamma \end{array}$

140

ATLAS Higgs discovery potential for 30 fb⁻¹

<u>at high mass:</u> Lepton final states are essential (via $H \rightarrow WW$, ZZ)

<u>at low mass:</u> Lepton and Photon final states (via H \rightarrow WW^{*}, ZZ^{*} or direct $\gamma\gamma$)

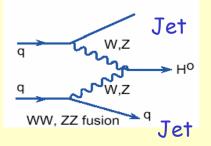

Tau final states

The dominant **bb decay mode** is only useable in the associated production mode (ttH)

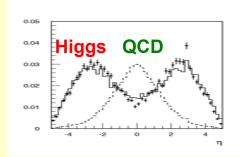
- Full mass range can already be covered after a few years at low luminosity
- Vector boson fusion channels play an important role
- Several channels available over a large range of masses

K. Jakobs

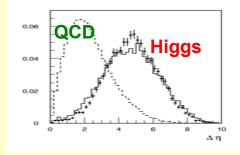
Comparable situation for the CMS experiment


Effects of NLO contributions are shown for several channels

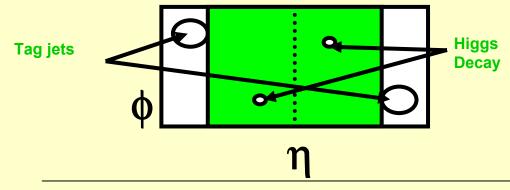
Update:


CMS is writing Physics Report (TDR), expected in June 2006

Higgs Search in Vector Boson Fusion


Motivation: Increase discovery potential at low mass Improve measurement of Higgs boson parameters (couplings to bosons, fermions) (proposed by D. Zeppenfeld et al.)

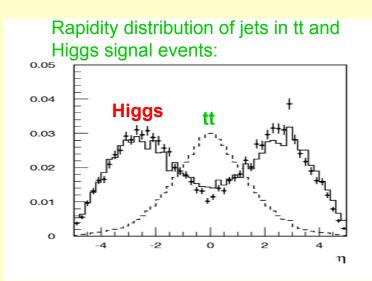
Pseudorapidity of jets



Difference in pseudorapidity

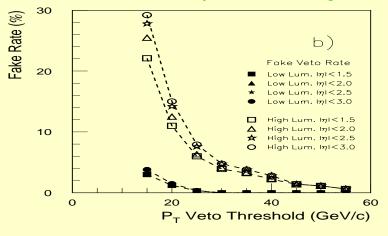
Distinctive Signature of:

- two high P_T leptons
- missing transverse momentum
- two high P_T forward tag jets
- little jet activity in the central region
 ⇒ central jet Veto

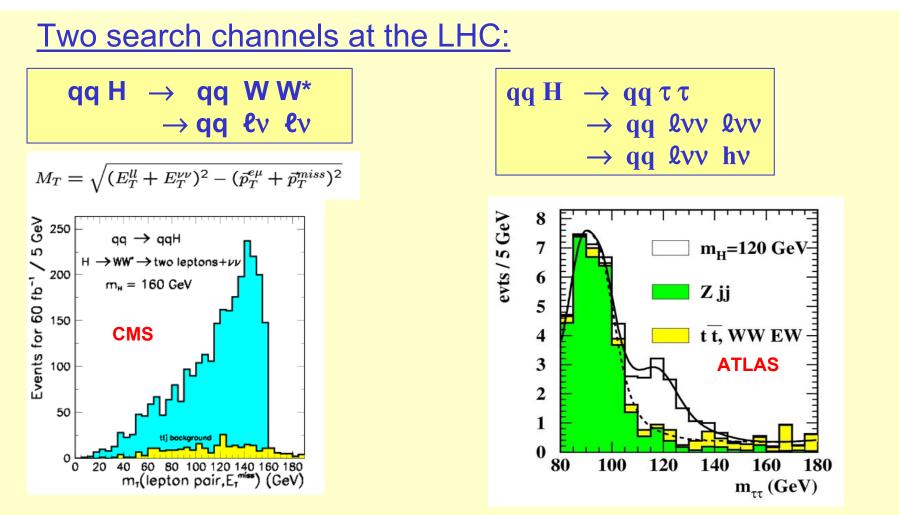


K. Jakobs

\Rightarrow Experimental Issues:


- Forward jet reconstruction
- Jets from pile-up in the central / forward region

Studied in full simulation by ATLAS and CMS



Efficiency of forward jet reconstruction

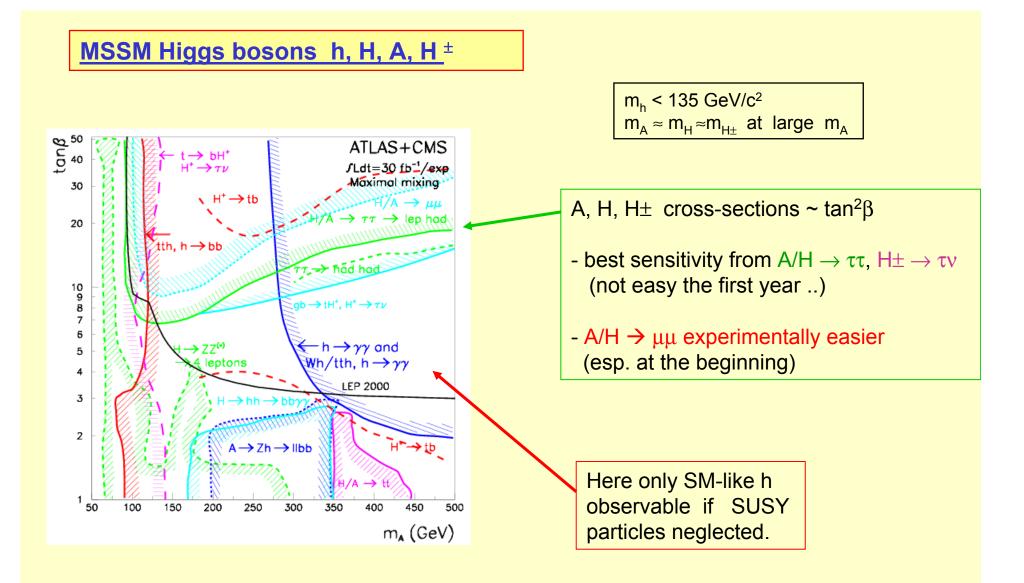
Fraction of events with jet in central region

Looks feasible at low luminosity, higher tag jet P_{T} - thresholds needed at high luminosity; However, first data needed to confirm activity in the forward regions (underlying event)

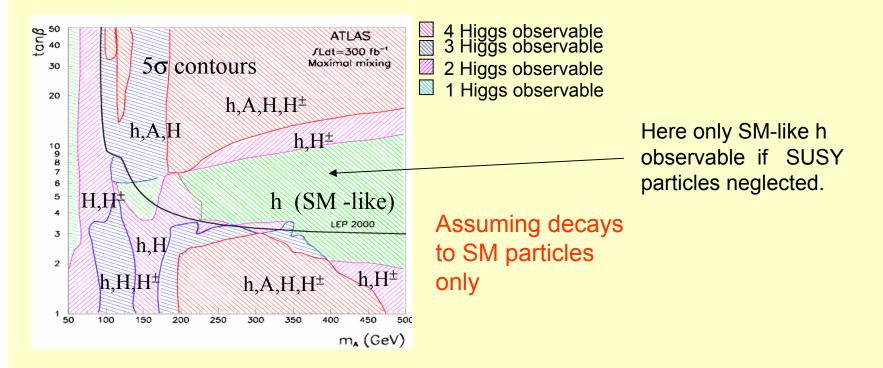
Selection criteria:


- Lepton P_T cuts and tag jet requirements ($\Delta \eta$, P_T)
- Require large mass of tag jet system
- Jet veto (important)
- Lepton angular and mass cuts

How reliable are these signals ?

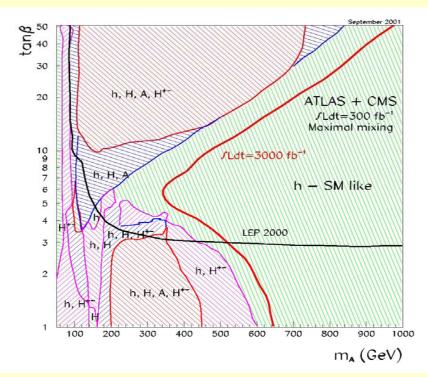

(Japan-ATLAS contributions)

Can the jet veto be calculated reliably ?


• Comparison between explicit matrix element calculations and shower Monte Carlos for W + jj production (D. Zeppenfeld, E. Richter-Was, TeV4LHC workshop)

K. Jakobs

LHC discovery potential for MSSM Higgs bosons

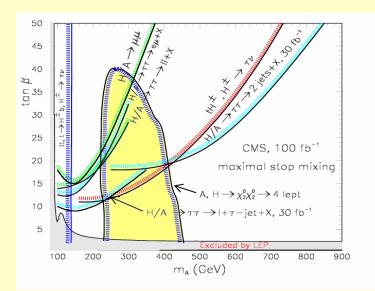

• Region at large m_A and moderate tan β only covered by h; difficult to detect other Higgs bosons

Possible coverage:

- * via SUSY decays (model dependent, see below)
 - * luminosity (only moderate improvement)

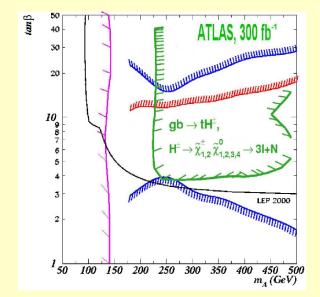
MSSM discovery potential for Super-LHC

ATLAS + CMS, 2 x 3000 fb⁻¹



- Situation can be improved, in particular for $m_A < \sim 400 \text{ GeV}$
- But: (S)LHC can not promise a complete observation of the heavy part of the MSSM Higgs spectrum

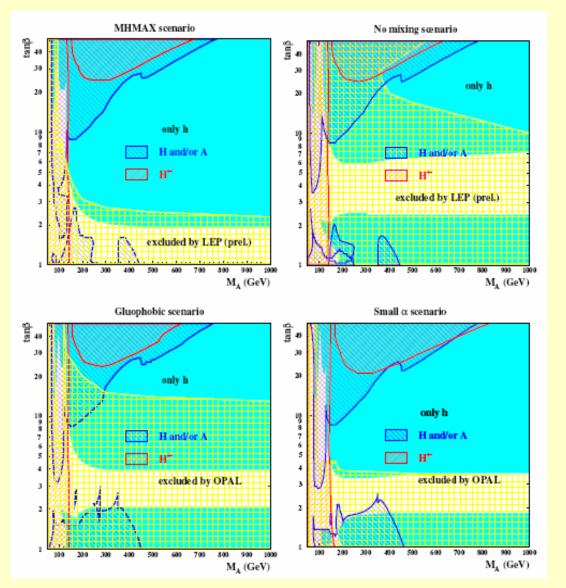
.... although the observation of sparticles will clearly indicate that additional Higgs bosons should exist.


Higgs decays via SUSY particles

If SUSY exists : search for $H/A \rightarrow \chi^0_2 \chi^0_2 \rightarrow \ell \ell \chi^0_1 \ell \ell \chi^0_1$

CMS: special choice in MSSM (no scan) $M_1 = 60 \text{ GeV/c}^2$ $M_2 = 110 \text{ GeV/c}^2$ $\mu = -500 \text{ GeV/c}^2$

 $gb \rightarrow tH^+, H^\pm \rightarrow \chi_{2,3}^0 \chi_{1,2}^\pm \rightarrow 3\ell + E_T^{miss}$


ATLAS: special choice in MSSM (no scan) $M_1 = 60 \text{ GeV/c}^2$ $M_2 = 210 \text{ GeV/c}^2$ $\mu = 135 \text{ GeV/c}^2$ $m(s-\ell_R) = 110 \text{ GeV/c}^2$ $m(s-\tau_R) = 210 \text{ GeV/c}^2$

Exclusions depend on MSSM parameters (slepton masses, μ)

K. Jakobs

Tokyo University, June 2006

MSSM discovery potential for various benchmark scenarios

- Full parameter range can be covered with modest luminosity, 30 fb⁻¹, for all benchmark scenarios !
- Only one Higgs boson, h, in some regions (moderate tanβ – large m_A wedge)

valid if CP is conserved !!

Different in CP violating scenarios

Different MSSM benchmark scenarios:

Benchmark scenarios as defined by M. Carena et al.

 $\begin{array}{ll} \textbf{MHMAX scenario} & (M_{SUSY}\text{=}1 \text{ TeV}) \\ \text{maximal theoretically allowed region for } m_h \end{array}$

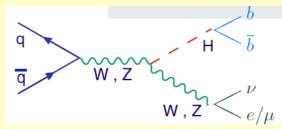
Nomixing scenario (M_{SUSY} = 2 TeV) (1TeV almost excl. by LEP) small m_h → difficult for LHC

Gluophobic scenario (M_{SUSY} = 350 GeV) coupling to gluons suppressed (cancellation of top + stop loops) small rate for g g \rightarrow H, H $\rightarrow\gamma\gamma$ and Z \rightarrow 4 {

Small α scenario(M_{SUSY} = 800 GeV)coupling to b (and t) suppressed(cancellation of sbottom, gluino loops) for
large tan β and M_A 100 to 500 GeV

Results from the

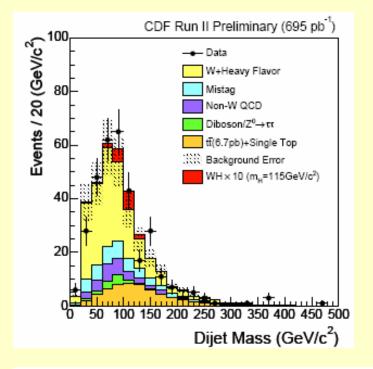
present Tevatron


Run II data

data corresponding to 350 – 950 pb⁻¹ analyzed

Tokyo University, June 2006

Low Mass: WH \rightarrow e/µ v bb

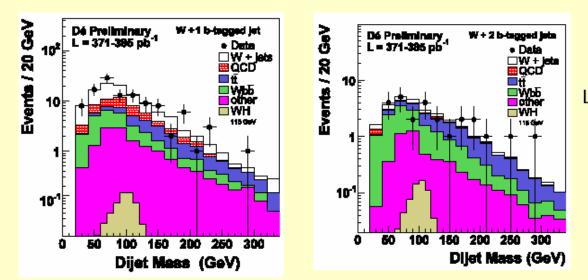

Data sample: 695 pb⁻¹

Event selection:

- 1 high P_{T} central e or μ
- P_T^{miss} > 20 GeV/c
- 2 jets, at least 1 b-tagged
- veto events with > 1 lepton

Backgrounds:

- Wbb, Wcc, Wjj (mistags)
- WW, WZ, ZZ, $Z{\rightarrow}\,\tau\tau$
- tt, single top
- QCD multijet

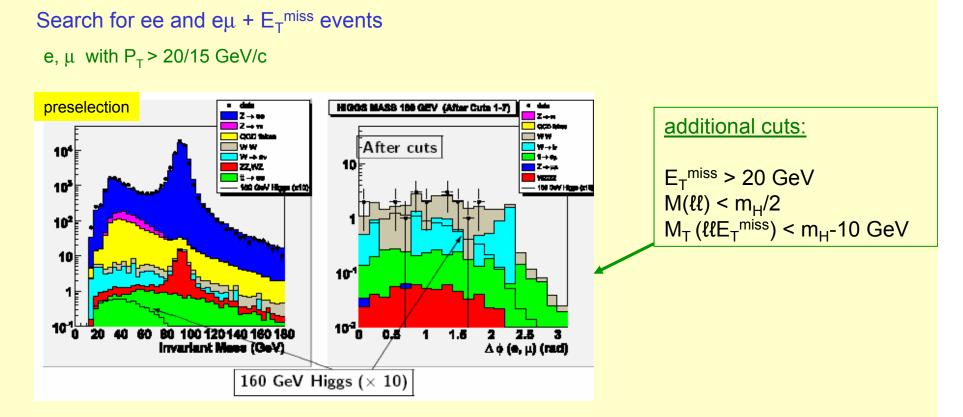

Observed Events(Before <i>b</i> -tagging)	10647
Mistag	41.8 ± 9.0
$Wb\bar{b}$	120.2 ± 41.1
$Wc\bar{c}$	33.7 ± 11.5
Wc	25.0 ± 6.5
$t\bar{t}(6.7 \mathrm{pb})$	37.8 ± 6.4
Single Top	20.1 ± 2.1
$Diboson/Z^0 \rightarrow \tau \tau$	10.6 ± 1.7
non-W QCD	29.5 ± 5.1
Total Background	318.8 ± 54.7
Observed Events(≥1tag w/ NNtag)	332

Low Mass: WH \rightarrow ev bb

Data sample: ~380 pb⁻¹

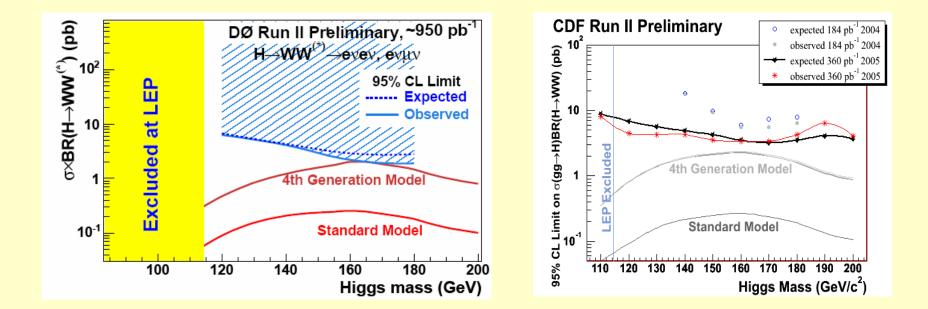
 $\label{eq:expectation} \begin{array}{l} \underline{\text{Event selection}}: 1 \ e/\mu, \ (|\eta| < 1.1, \ E_T > 20 \ \text{GeV}), \ E_T^{\text{miss}} > 25 \ \text{GeV}, \\ 2 \ \text{jets} \ (E_T > 20 \ \text{GeV}, \ |\eta| < 2.5) \\ 1 \ \text{or} \ 2 \ \text{b-tags} \end{array}$

Limit from combined channels:

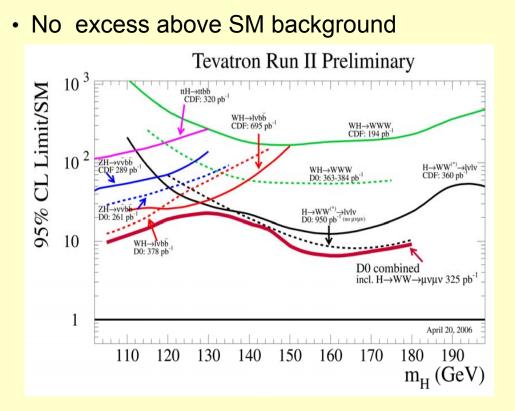

$$m_H = 115$$
 GeV, $75 < m_{jj} < 125$ GeV

events	single tag	double tag
observed	32	6
predicted	45	9.3

* $\sigma_{95} = 2.5 \text{ pb}$


High mass: $H \rightarrow WW \rightarrow \ell \nu \ell \nu$

- Analyses have been performed by both CDF and DØ
- based on data corresponding to an int. luminosity of up to ~ 950 pb⁻¹

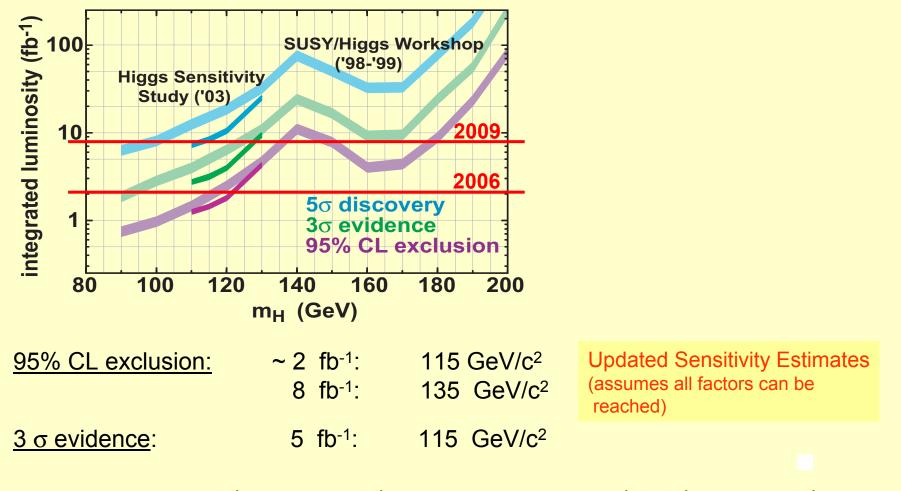

Data are consistent with expectations from SM backgrounds

Limits on $H \rightarrow WW \rightarrow \ell \nu \ell \nu cross sections$

Higgs boson searches at the Tevatron

Many analyses (in many different channels) have been performed

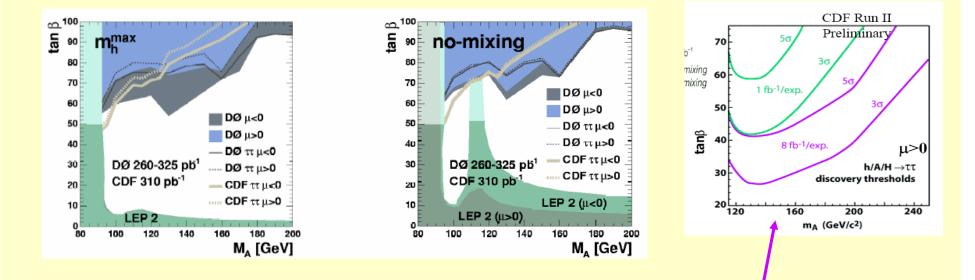
 \Rightarrow Limits extracted


Combination of current analyses (DØ): for ~378 - 950 pb⁻¹

- upper limit about ~ 15 times larger than SM prediction at 115 GeV/ c^2
- for L = 2 fb⁻¹: \rightarrow gain = $\sqrt{L} / 0.378 \rightarrow$ still a factor ~6 missing

Can the missing factors be gained ??

Anticipated improvements:

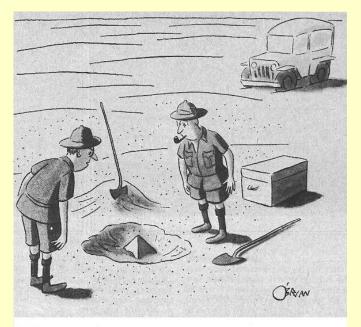

- increase acceptance (forward leptons, forward b-tagging)
- improvements in b-tagging (neural network)
- improvements in selection efficiencies (track-only leptons, neural networks)
- improved di-jet mass resolution
-

improvements not demonstrated yet, no guarantee, but there is a chance....

MSSM Higgs boson searches at the Tevatron

Search for $A/H \rightarrow bb$ and $A/H \rightarrow \tau \tau$

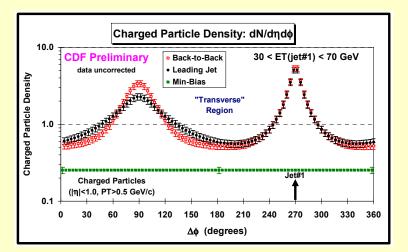
Start to access interesting regions of parameter space and to constrain models at large tan β ; (however, beware of large radiative corrections !)


Good prospects for discovery of MSSM Higgs bosons in the (large $tan\beta$ -small m_A) region, if 8fb⁻¹ can be achieved.

From the Tevatron to the LHC

In addition to measuring top quark properties, testing the Standard Model and making discoveries the Tevatron has a key role in:

Testing and validation of Monte Carlos Transfer of knowledge on Object ID and Computing


Certified Monte Carlos + reliable theoretical calculations at NLO, NNLO++.... will allow to minimize uncertainties on the backgrounds at the LHC

"This could be the discovery of the century. Depending, of course, on how far down it goes."

Two examples:

(i) <u>Study of Minimum Bias Events</u> (important for LHC simulations, pile-up,.....)



(ii) <u>Study of CKKW matching procedures</u>

(important application: description of jet vetos in searches for New Physics) Z+ jet data, comparison to the SHERPA and PYTHIA Monte Carlos

data w/stat error **D0 Runll Preliminary** . data w/stat & sys error Nr. of Events Sherpa range stat 10 nerpa range stat & sys 10³ 10² 10 6 **Jet Multiplicity** Data / SHERPA 43 SHERPA 2 0.2 0 1 2 3 4 5 6 **Jet Multiplicity**

SHERPA also describes correlations among jets

Conclusions

Hadron Colliders will play a crucial role in physics over the forthcoming years:

Tevatron:- data taking is running smoothly now (after a slow start-up)
- data are (so far) in good agreement with SM expectations
- discovery window for SUSY still exists
- interesting information on the Higgs boson (limits, 3σ effects)
can be achievedLHC:- huge discovery potential, can say the final word about
The Standard Model Higgs mechanism
and

Low-energy SUSY and other TeV-scale predictions

The results will most likely modify our understanding of Nature