Polarized Proton Elastic Scattering at very low –t region in RHIC

Osamu Jinnouchi (RBRC) August 5th,2004 ICEPP Seminar

陣内 修

Outline

- Theoretical background on proton elastic scattering process, and previously obtained experimental results
- Aspects for the proton polarimetry in high energy spin physics (RHIC Spin)
- Experimental techniques (setup, complex)
 pC CNI measurements at RHIC, AGS
 pp CNI measurements with H Jet target
- Recent results from Run-2004
- Issues and technical difficulties

Introduction for polarized proton elastic scattering

based on PLD59,114010 N.H.Buttimore et al (1999)

Polarized Proton-proton elastic scattering

■ Measurement of helicity amplitudes at high energy
 → dynamical mechanism in asymptotic region
 ■ 5 independent amplitudes \$\phi_i\$ (6th exists for non-identical particles scattering)

Non-flip

$$\phi_1(s,t) = \langle ++|M|++ \rangle$$

10

double spin flip
$$\phi_2(s,t) = \langle ++|M| - - \rangle$$

Non-flip $\phi_3(s,t) = \langle + - |M| + - \rangle$

double spin flip $\phi_4(s,t) = \langle + -|M| - + \rangle$

single spin flip $\phi_5(s,t) = \langle ++|M|+- \rangle$

The region at RHIC $|t| \ll m \ll \sqrt{s}$

total cross-section (optical theorem) $\sigma_{\text{tot}} = \frac{4\pi}{s} \operatorname{Im}[\phi_1(s,t) + \phi_3(s,t)]\Big|_{t=0}$

differential cross-section

$$\frac{d\sigma}{dt} = \frac{2\pi}{s^2} \{ |\phi_1|^2 + |\phi_2|^2 + |\phi_3|^2 + |\phi_4|^2 + 4|\phi_5|^2 \}$$

In case of, p + Spin0 Only "Non-flip" or "Single-flip" exist

ICEPP Seminar

Spin dependent asymmetries

Use initial state polarization of beams
 7 spin independent asymmetries (AN',ALS' degenerate for identical particles)

$$A_{N} \frac{d\sigma}{dt} = -\frac{4\pi}{s^{2}} \operatorname{Im} \{ \phi_{5}^{*}(\phi_{1} + \phi_{2} + \phi_{3} - \phi_{4}) \}$$

$$A_{NN}\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \{2|\phi_5|^2 + \operatorname{Re}(\phi_1^*\phi_2 - \phi_3^*\phi_4)\},\$$

$$A_{SS} \frac{d\sigma}{dt} = \frac{4\pi}{s^2} \operatorname{Re}\{\phi_1 \phi_2^* + \phi_3 \phi_4^*\},\$$

$$A_{SL}\frac{d\sigma}{dt} = \frac{4\pi}{s^2} \operatorname{Re}\{\phi_5^*(\phi_1 + \phi_2 - \phi_3 + \phi_4)\},\$$

 $A_{LL} \frac{d\sigma}{dt} = \frac{2\pi}{s^2} \{ |\phi_1|^2 + |\phi_2|^2 - |\phi_3|^2 - |\phi_4|^2 \}.$

- Needs substantial measurements far from Experimental situation
- Only A_N (analyzing power) extensively measured

$$\phi_{+} = \frac{1}{2}(\phi_{1} + \phi_{3}), \quad \phi_{-} = \frac{1}{2}(\phi_{1} - \phi_{3}),$$

Cross section diffs. (Longitudinal/Transverse)

$$\frac{\operatorname{Im} \phi_{-}(s,0)}{\operatorname{Im} \phi_{+}(s,0)} = \frac{1}{2} \frac{\Delta \sigma_{L}(s)}{\sigma_{\mathrm{tot}}(s)}, \quad \Delta \sigma_{L} = \sigma_{\rightleftharpoons} - \sigma_{\rightarrow}^{\rightarrow},$$

$$\frac{\operatorname{Im} \phi_2(s,0)}{\operatorname{Im} \phi_+(s,0)} = - \frac{\Delta \sigma_T(s)}{\sigma_{\mathrm{tot}}(s)}, \quad \Delta \sigma_T = \sigma_{\uparrow\downarrow} - \sigma_{\uparrow\uparrow} \,.$$

Interference of Hadronic/Electromagnetic

Single photon exchange is approximated

$$\phi_{1}^{\text{em}} = \phi_{3}^{\text{em}} = \frac{\alpha s}{t} F_{1}^{2} \qquad \phi_{2}^{\text{em}} = -\phi_{4}^{\text{em}} = \frac{\alpha s \kappa^{2}}{4m^{2}} F_{2}^{2}$$
$$\phi_{5}^{\text{em}} = -\frac{\alpha s \kappa}{2m\sqrt{-t}} F_{1}F_{2}$$

QED exact calculation available F1,F2 : proton em form factors κ: anomalous magnetic moment 8/5/2004 Hadronic amplitude

$$\phi_j \equiv \phi_j^R + \phi_j^{As} \qquad \phi_j^R / \phi_j^{As} \to 1/\sqrt{s} \ (s \to \infty)$$

simple Pomeron pole + something (one model)

$$\operatorname{Im} \phi_+^{As}(s) = a_{\mathrm{P}}s + a_Fs \ln^2 s$$

ICEPP Seminar

Spin flip amplitude (r_5) and $A_N(t)_{PP}$

Asymptotic behavior of non-dominant amplitudes

0.06

0.02

ICEPP Seminar

substantially modified by nuclear effects
AN (t) sensitive to r5
$$\frac{16\pi}{(\sigma_{tot}^{pC})^2} \frac{d\sigma_{pC}}{dt} A_N^{pC}(t) =$$

$$\frac{\sqrt{-t}}{m_N} F_C^h(t) \left\{ F_C^{em}(t) \frac{t_c}{t} [\kappa(1 - \delta_{pC}\rho_{pC}) - 2(\operatorname{Im} r_5^{pC} - \delta_{pC} \operatorname{Re} r_5^{pC})] - 2F_A^h(t) (\operatorname{Re} r_5^{pC} - \rho_{pC} \operatorname{Im} r_5^p) f \right\}$$

$$\frac{16\pi}{(\sigma_{tot}^{pC})^2} \frac{d\sigma_{pC}}{dt} =$$

$$(\frac{t_c}{t})^2 [F_C^{em}(t)]^2 - 2(\rho_{pC} + \delta_{pC})(\frac{t_c}{t}) F_C^h(t) F_C^{em}(t) + (1 + \rho_{pC}^2 - \frac{t}{m_p^2} |r_5^{pC}|^2) [F_C^h(t)]^2$$

 F_c^{em} , F_c^{h} Form factors (Electromagnetic, Hadronic) express pC process with Γ_5

Extension to p+C elastic scattering

$$r_5^{pC}(t) = \frac{1 - i\rho_{pC}(t)}{1 - i\rho_{pN}}r_5$$

similar form as pp

From the fit to AN(t), determination of r_5 and comparison with pp scattering is possible

0.1

based on PLD64,034004

B.Z. Kopeliovich et al (2001)

Proton Polarimeter Important Device for the RHIC Spin Physics

RHIC Spin Project

proton spin crisis

$$1/2 = (1/2)\Delta\Sigma + \Delta g + L_Q + L_G$$

 $\Delta \Sigma: \text{ quark spin} \sim 0.2-0.3 \text{ (EMC, SMC)}$ $\Delta g: \text{ gluon spin } \Delta g/g= -0.2+/-0.3 \text{ (SMC)}$ $L_Q, L_G \text{ : orbital angular momentum } \sim ?$

- $\Delta g(x)$ measurement
 - Contribution of gluon polarization to the proton spin
 - □ The direct probe for gluon originated process using $\sqrt{s}=200$ GeV, 500GeV polarized proton collisions
- Decomposition of flavor dependent contribution
- Measure Transversity 8/5/2004

Polarimeter : Impact on the RHIC Spin project

RHIC-Spin is the first Polarized-Proton collider ($E_B = 100-250GeV$)

Same for other Spin configurations (AN, ATT, etc)

- To obtain the physics quantity, the raw asymmetry (=ε) needs to be normalized by beam polarization
- Scaling correction, but generally P_B changes time to time
- Reliable and quick proton polarimeter is essential for diagnosing, monitoring the beam polarization, requires dP/P < 5%

E950 measurement at AGS

- An measurement for elastic $\overrightarrow{p+C}$ scattering
- 21.7 GeV/c polarized proton beam, calibrated with separate polarimeter (E925) using extracted AGS beam
- Large contribution (~15%) from hadronic spin-flip amplitude

Constraint

- Close to the RHIC injection energy (24GeV/c), but one step smaller than the last strong intrinsic resonance
- ~30% measurement error is tied to the ambiguity of beam polarization (E925)

Pomeron spin flip amplitude

Introduce *t* independent parameter τ (s)

$$\phi_5(s,t) = \tau(s) \frac{\sqrt{-t}}{m} \phi_+(s,t)$$

Analogy to the non-flip scattering (pp elastic, dominated by I=0 exchange)

$$\phi_5(s,t) = \frac{\sqrt{t}}{m} \{ \tau_P \phi_P(s) + \tau_f \phi_f(s) + \tau_\omega \phi_\omega(s) \}$$

 $\phi_P(s), \phi_f(s), \phi_\omega(s)$: form established au's are real numbers

Once these parameters are determined, $A_N(t)$ at any energy (s) can be predicted

based on hep-ph/0305085 T.L.Trueman (2003)

$$\phi_P(s) = -Xs^{\varepsilon} \left(\cot\frac{\pi}{2}(1+\varepsilon) - i\right)$$

$$\phi_f(s) = -Ys^{\eta} \left(\cot\frac{\pi}{2}(1+\eta) - i\right)$$

$$\phi_{\omega}(s) = -Y's^{\eta'} \left(\tan\frac{\pi}{2}(1+\eta') + i\right)$$

In hep-ph/0305085 from results τ (e950) (2eq.), and the shape of A_N at 100GeV (Run2002) (1eq.)

 $\tau_{\rm P}$ = -0.02, $\tau_{\rm f}$ = -0.43, $\tau_{\rm o}$ = 0.03 with large ambiguity

ICEPP Seminar

Experimental Techniques (Setup, Complex)

RHIC/AGS at Brookhaven National Laboratory

RHIC is visible from air-plane 4km circumference

ICEPP Seminar

RHIC

RHIC varieties of components for pp-mode

keep polarization at store

Spin Rotators : 8/5/2004

Iongitudinal spin direction at collision point

Trilogy of CNI polarimetry

RHIC – polarimeters

Quick and stable measurements Provide polarization info for experiments Goal is $\Delta p/p=5\%$, needs to be calibrated

AGS – polarimeter

Diagnostic device for the polarization in AGS acceleration

Inside the AGS tunnel at C15

Hydrogen Gas JET target polarimeter

Consists of $95 \pm 1\%$ polarized H jet target and $pp \rightarrow pp$ elastic polarimeter Provide beam polarization without ambiguity from theoretical model (firstly commissioned at Run-04)

Event selection

- Strong correlation : Kinetic relation (TOF vs. Energy) of recoil particle
- Banana cut can identify the carbon (= mass cut)
- Back ground < a few %</p>

8/5/2004

ICEPP Seminar

Data acquisition with WFD (Wave Form Digitizer)

CNI polarimeter is destructive for beam Dead time free DAQ system is indispensable

Characterize pulse with FPGA algorithm

dt ~ 1.2 nsec dE ~ 50 keV Sampling: 3x140MHz

Data stored in onboard memory Synchronized to accelerator clock

High Statistics (20M /run) High DAQ rate (~0.5M /sec)

2D Memory map in WFD

LUT \rightarrow Online Results

Data Readout

- After Measurement (RHIC)
- Between Beam Injections (AGS)
- During Jet Polarization Flips

(JET)

Raw asymmetry \rightarrow Polarization

- <AN> compensates the difference in acceptance, S/N between polarimeters
- Asymmetry calculation with Square-Root Formula

Recent results from Run-04

RHIC... CNI measurements within a fill

RHIC... Bunch by bunch Asymmetry

Simple Left-Right asymmetry

recoil detection

- + / bunches clear separation
- Luminosity / Acceptance asymmetry stable

typical run (not best)

RHIC... -t dependence

- -t dependence follows theoretical model
- False asymmetries (Cross, Radial) are clean
- Physics asymmetries 90°, 45° agree

RHIC... Polarization history in pp run-04

RHIC... Issues on polarization profile

- Polarization
 Beam Intensity
- H Scan --horizontal scan with vertical target
- V Scan vertical scan with horizontal target

- Large polarization profile in vertical (small profile in horizontal)
 Observed position dependent fluctuation in pol measurements
- Observed position dependent fluctuation in pol measurements

RHIC... Ramp measurements

- 5 ramp measurements taken in Run-04 (Fill: 5159,5169,5170,5199,5332)
- Larger on-board memory, larger statistics
- All of them suffered large profile effects due to the beam motion along the ramp
- Found the depolarization point prior to the energy ramp (200MHz RF cavity magnet ramp)

JET... Energy - Position correlations $T_{kin} \propto \theta^2$ (i.e. position²)

ICEPP Seminar

JET... "ONLINE" measured asymmetries & Results

data divided into 3 recoil energy bins

ONLINE ≡ statistical errors only no background corrections no dead layer corrections no systematic studies no false asymmetries studies no run selection

blue beam with alternating bunch polarizations: $\uparrow \downarrow \uparrow \downarrow \uparrow \downarrow \ldots$

good uniformity from run to run (stable JET polarization) JET polarization reversed each ~ 5 min.

 $P_{beam} = 36.9 \% \pm 1.9 \%$ $\langle P_{beam} (pC \text{ CNI}) \rangle = 38.1 \%$ No major surprises ?

Issues and technical difficulties

Important issue for the systematic (-t determination)

• *t* is estimated from recoil Carbon energy $-t = 2M_C E_{elastic}$ $E_{elastic} = E_{deposit} + \Delta E_{target} + \Delta E_{deadlayer}$

 $(\Delta E_{target} \sim 0.1 \times \Delta E_{deadlayer})$

Estimation with kinetic fit to banana $Tof(ns) = \sqrt{\frac{M_C}{2}} \frac{Distance}{\sqrt{E_{elastic}}} + t_0$ $E_{elastic} = f(E_{deposit}, D_{width})$

Once the dead layer issue solved, the jet-measurements will not be needed anymore

IF NOT, calibration needed every year

In order to be Insensitive to Polarization Profile (For stable and robust CNI measurements)

- Definition of P differs in measurements
- 1) pC CNI samples one point
- 2) pp-Jet target covers whole beam profile

$$\overline{P} = \sum_{x} N(x)P(x) / \sum_{x} N(x)$$

3) Experiments head-on collisions

$$\overline{P} = \sqrt{\sum_{x} (N(x)P(x))^2 / \sum_{x} (N(x))^2}$$

The idea is to move the target across the beam in steps during regular runs

 $\Box \text{ Online results } \rightarrow 2)$

 \Box Offline results \rightarrow 1),2),3)

Induced current free silicon design No More Beam Induced Pickups...

NO BEAM CHARGE INDUCED SIGNAL !!! (Up to 2.10¹¹ p/bunch)

New improvement in AGS CNI

- every second wire is ground line, from edge to edge.
- \Box wide range of -t is available
- able to open the time window to very close to the beam crossing

- To apply for RHIC CNI
 - □ new vacuum ports
 - □ new detector mounts (ceramics)
 - □ R&D on the glue for the vacuum
 - new RF shields
 - add coolers

Plan of RHIC Spin

On Polarimetry

□ pp, pC calibration \rightarrow determine r_5 □ more precise calibration at 2005 (100GeV) □ 250GeV calibration (2008)

■ RHIC Spin General □ Long physics run at 2005 □ W→ flavor decomposition (2008)

Summary

- Successful Jet-target commissioning done
- Calibration from online result looks consistent with calibration by E950
- Efforts of extracting pp, pC AN are in progress

Final goal △P/P = 5% will be obtained in run-05