Hosotani, Tanaka, Uekusa, 1103.6076

<mark>(utaka Hosotani, KOsaka Universit</mark>

ICEPP (Univ of Tokyo), 14 April 201

家協会と

ゲージ・ヒッグス統合理論

Hosotani 1983, 1989 Davies, McLachlan 1988, 1989 Hatanaka, Inami, Lim, 1998

LHCでどのように見るか

SO(5) imes U(1) in Randall-Sundrum warped space

$$ds^2 = e^{-2k|y|} dx_\mu dx^\mu + dy^2$$
 Agashe, Contino, Pomarol 2005
 $0 \le |y| \le L = \pi R$ Agashe, Contino, Pomarol 2005
Hosotani, Sakamura 2006
Medina, Shah, Wagner 2007

Matter content

Chiral fermions on orbifolds

Effective interactions

$$AB \text{ phase } \hat{\theta}_{H} = \theta_{H} + \frac{H}{f_{H}} \quad f_{H} = \frac{2}{\sqrt{kL}} \frac{m_{KK}}{\pi g}$$

$$\mathcal{L}_{eff} \sim -V_{eff}(\hat{\theta}_{H}) \qquad \text{YH 1983, Oda-Weiler 2005}_{Falkowski 2007}$$

$$-m_{W}(\hat{\theta}_{H})^{2}W_{\mu}^{\dagger}W^{\mu} - \frac{1}{2}m_{Z}(\hat{\theta}_{H})^{2}Z_{\mu}Z^{\mu}_{Sakamura-YH 2006, 2007}$$

$$-m_{f}(\hat{\theta}_{H})\overline{\psi}_{f}\psi_{f} \qquad \text{YH-Kobayashi 2008}$$

$$\theta_{H} \sim \theta_{H} + 2\pi$$

Energy density $/m_{\rm KK}^4$

Masses & Yukawa couplings

 $\theta_H + \frac{1}{f_H}$ ${}^5\Psi$ $g_A \Psi A$

 Ψ_L, Ψ_R couple by gauge int.

$$egin{aligned} m(\hat{ heta}_H)ar{\psi}\psi \ &= m(heta_H)ar{\psi}\psi + m^{(1)}(heta_H)rac{H}{f_H}ar{\psi}\psi + rac{1}{2}m^{(2)}(heta_H)rac{H^2}{f_H^2}ar{\psi}\psi + \cdots \ & ext{Yukawa} \ &\sim m_far{\psi}\psi \ + \ 0 \ - rac{m_f}{2f_H^2}H^2ar{\psi}\psi + \cdots \ & ext{Yukawa} \end{aligned}$$

H parity $H \rightarrow -H$

 $P_{H} = egin{cases} + & W^{(n)}, Z^{(n)}, \gamma^{(n)}, gluon^{(n)}, q^{(n)}, \ell^{(n)}, \cdots \ & \ - & H^{(n)}, W'^{(n)}, Z'^{(n)}, q'^{(n)}, \ell'^{(n)}, \cdots \end{cases}$

Higgs field : the lightest P_H -odd field. WWH, ZZH, Yukawa = 0

Stable Higgs -> Dark Matter

How to see the Higgs bosons at LHC/ILC

Production:

Stable Higgs boson

missing energy, missing momentum

Cheung, Song, 1004.2783 Alves, 1008.0016 $\nu, \bar{\nu}$ background hard at LHC, possible at ILC

YH, Tanaka, Uekusa, 1103.6076

major background $e^+e^- o Z
u ar{
u}$

Polarized e^{\pm}

 $\sqrt{s} = 750\,{
m GeV}\;, z_L = 10^{15}, M_{
m mis} > 250\,{
m GeV},\; |\cos heta| < 0.6$

 $L>2.0\,\mathrm{ab}^{-1}~\mathrm{for}~5\sigma$

Gauge couplings precision measurements

Forward-backward asymmetry in $e^+e^- o Z o \ell ar{\ell} \;, \, q ar{q}$

Z-decay widths (branching fractions)

	No. data	SM	$z_L:10^{15}$	$z_L:10^{10}$	$z_L:10^5$
$\sin^2 heta_W$		0.2312	0.2309	0.2303	0.2284
$\chi^2(AFB)$	6	10.8	6.3	6.4	7.1
$\chi^2(Z \ decay)$	8	13.6	16.5	37.7	184.5

Observe extra dimension

KK modes

1st KK modes

mass		$z_L:10^{15}$	$z_L:10^5$
	$m_{ m KK}$	1466	836
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$Z^{(1)}$	1130	653
mass	$gluon^{(1)}$	1144	678
	$u^{(1)}$	1361	1037
	$t^{(1)}$	1121	634
$\sum^{s} \qquad \theta_{H}/\pi$			${ m in}~{ m GeV}$

Large couplings for right-handed quarks and lepton

 \sim imes 10

Z' Search at Tevatron

 $p \, \bar{p}
ightarrow Z'
ightarrow e^+ e^-$

Z' Search : CMS 1103.0981

$M>1140\,{ m GeV}$

Z' Search : ATLAS 1103.6218

KK Z at LHC (3.5 + 3.5 TeV)

KK Z at LHC (3.5 + 3.5 TeV)

Y. Hosotani, PPP2011, YITP, 8 March 2011, -25

KK $Z^{(1)}$

Large couplings for right-handed quarks and lepton

KK gluon⁽¹⁾

Strong couplings for right-handed quarks

$\operatorname{Couplings}/g_s$				
u_R	6.32			
c_R	6.04			
t_R	5.60			

 $\Gamma \sim 13 \, m$

Perturbation theory breaks down.

No peak.

Similar for KK photons.

Summary

Gauge-Higgs unification can be tested at LHC.

Higgs naturally becomes stable.

the second second second second

EW precision data $A_{FB}, \ Z \ {
m decay}$ Z' search (Tevatron/LHC) $\Rightarrow z_L \ge 10^{15}$

> Find $Z^{(1)}$ at LHC. $m \sim 1130 \,\text{GeV}, \ \Gamma \sim 415 \,\text{GeV}$ Asymmetry in e^+e^- distribution