J-PARC実験: *K*中間子崩壊による レプトン・ユニバーサリティの破れの探索

KEK, IPNS 今里純

2012年6月28日 東京大学 ICEPP セミナー

話の内容

- 1. J-PARC と TREK実験
- 2. レプトン普遍性(LU)の破れ
- 3. LUの破れの探索 実験 (P36)
 - ・これまでのリミットとP36の目標感度
 - ・TREK測定器
 - ・系統誤差の評価
 - ・重いニュートリノ探索
- 4. ビームライン、測定器R&D
- 5. まとめ

J-PARC と TREK実験

J-PARC Facility

J-PARC = Japan Proton Accelerator Research Complex

Hadron

Experimental Facility

Currently, 190 kW for FX and 6 kW for SX

TREK (J-PARC E06)

Time Reversal Experiment with Kaons: Search for New Physics beyond the Standard Model by Measurement of T-violating Transverse Muon Polarization (P_T) in $K^+ \rightarrow \mu^+ \pi^0 \nu$ Decays

 $K^+ \rightarrow \mu^+ \pi^0 \nu$

Official website: http://trek.kek.jp

Transverse μ^+ polarization (P_T) in $K_{\mu3}$

$$K^+ \rightarrow \pi^0 \mu^+ \nu \text{ decay}$$

• P_T is T-odd, and spurious effects from final state interaction are small: P_T (FSI) < 10⁻⁵ Non-zero P_T is a signature of T violation.

• Standard Model (SM) contribution to P_T : $P_T(SM) < 10^{-7}$

 P_{τ} in the range $10^{-3} \sim 10^{-4}$ is a sensitive probe of CP violation beyond the SM.

There are theoretical models of new physics which allow a sizable P_T without conflicting with other experimental constraints.

Sensitivity of E06

• J-PARC full beam power of 270 kW is necessary for the E06 TREK experiment : ==> Future experiment

• A possible experiment at 30 kW with the TREK detector subsystem :

Search for Lepton Universality Violation

TREK collaboration

Canada

• USA

- Russia
- Vietnam
- Japan

U. Saskatchewan TRIUMF UBC **U.** Montreal U. Manitoba Hampton U. U. South Carolina Iowa State U. INR National Science U. KEK Tohoku U. Osaka U. TITech

レプトン普遍性(LU)の破れ

Lepton universality

Standard Model:

 Three generations for quarks and leptons
 Leptons: *e*, μ, and τ

$$\begin{pmatrix} \nu_e \\ e \end{pmatrix} \begin{pmatrix} \nu_\mu \\ \mu \end{pmatrix} \begin{pmatrix} \nu_\tau \\ \tau \end{pmatrix}$$
$$\begin{pmatrix} u \\ d \end{pmatrix} \begin{pmatrix} c \\ s \end{pmatrix} \begin{pmatrix} t \\ b \end{pmatrix}$$

- Different masses but same gauge couplings
- Up to now, it is valid experimentally

Lepton Universality

- Why are the weak couplings of e, μ , and τ nearly equal?
- Even a small difference would signal a profound discovery : → *Necessity of experimental efforts*

Limits of universality

$$\mathbf{g}_{\mu}/\mathbf{g}_{e} = 1.0012 \pm 0.0015$$
 (1997)

 μ -e universality has been well established

Recent development of τ spectroscopy

- $\tau_{\tau}, m_{\tau}, \tau_{\tau}/\tau_{\mu} = (m_{\tau}/m_{\mu})^5 (\mathbf{g}_{\tau}/\mathbf{g}_{\mu})^2$
- τ Michel parameters
- Couplings to W and Z^0
- $g_{\tau}/g_{\mu} = 1.0003 + -0.0029$ (1997)

No evidence yet for universality violation

Recent data on LU

• Summary by A. Pich [arXiv:1201.0 537v1 [hep-ph] (2012)

	$\Gamma_{\tau \to \nu_\tau e \bar{\nu}_e} / \Gamma_{\mu \to \nu_\mu e \bar{\nu}_e}$	$\Gamma_{\tau \to \nu_\tau \pi} / \Gamma_{\pi \to \mu \bar{\nu}_\mu}$	$\Gamma_{\tau \to \nu_\tau K} / \Gamma_{K \to \mu \bar{\nu}_\mu}$	$\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to\mu\bar\nu_\mu}$	
$ g_{ au}/g_{\mu} $	1.0007 ± 0.0022	0.992 ± 0.004	0.982 ± 0.008	1.032 ± 0.012	
	$\Gamma_{\tau \to \nu_\tau \mu \bar{\nu}_\mu} / \Gamma_{\tau \to \nu_\tau e \bar{\nu}_e}$	$\Gamma_{\pi \to \mu \bar{\nu}_{\mu}} / \Gamma_{\pi \to e \bar{\nu}_{e}}$	$\Gamma_{K\to\mu\bar\nu_\mu}/\Gamma_{K\to e\bar\nu_e}$	$\Gamma_{K\to\pi\mu\bar\nu_{\mu}}/\Gamma_{K\to\pi e\bar\nu_{e}}$	
$ g_{\mu}/g_{e} $	1.0018 ± 0.0014	1.0021 ± 0.0016	0.998 ± 0.002	1.001 ± 0.002	
	$\Gamma_{W\to\mu\bar\nu_\mu}/\Gamma_{W\to e\bar\nu_e}$		$\Gamma_{\tau\to\nu_\tau\mu\bar\nu_\mu}/\Gamma_{\mu\to\nu_\mu e\bar\nu_e}$	$\overline{\Gamma_{W\to\tau\bar\nu_\tau}/\Gamma_{W\to e\bar\nu_e}}$	
$ g_{\mu}/g_{e} $	0.991 ± 0.009	$ g_{ au}/g_{e} $	1.0016 ± 0.0021	1.023 ± 0.011	
• LEP-II : $R_{\tau\ell}^W = \frac{2 \operatorname{BR} (W \to \tau \overline{\nu}_{\tau})}{\operatorname{BR} (W \to e \overline{\nu}_e) + \operatorname{BR} (W \to \mu \overline{\nu}_{\mu})} = 1.055(23)$					

• BABAR : Evidence for an excess of $\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau}$ decays [Phys. Rev. D 82, 072005 (2010)] $\mathcal{R}(D^{(*)}) = \mathcal{B}(\overline{B} \to D^{(*)}\tau^-\overline{\nu}_{\tau})/\mathcal{B}(\overline{B} \to D^{(*)}\ell^-\overline{\nu}_{\ell})$ 3.5 σ deviation

High precision test of g_{μ}/g_e is still important

Universality test by K_{l2} decays

Typical test in particle decay at low energy

$$\Gamma(K_{l2}) = \mathcal{G}_l^2 (G^2/8\pi) f_K^2 m_K m_{l2} \{ 1 - (m_l^2/m_K^2) \}^2$$

$$\mathcal{G}_{\rm e} = \mathcal{G}_{\mu}$$
 ?

$$K_{l2}$$
 decays in the SM $R_{K}^{SM} = \frac{\Gamma(K^{+} \rightarrow e^{+}\nu)}{\Gamma(K^{+} \rightarrow \mu^{+}\nu)} = \frac{m_{e}^{2}}{m_{\mu}^{2}} \left(\frac{m_{K}^{2} - m_{e}^{2}}{m_{K}^{2} - m_{\mu}^{2}}\right)^{2} (1 + \delta_{r})$ helicity suppression radiative correction (Internal Brems.)Standard Model:

- By forming ratio of the $\Gamma(K_{e2})$ to the $\Gamma(K_{\mu 2})$, hadronic form factors are cancelled out and the R_{κ}^{SM} is highly precise.
- Strong helicity suppression of the electronic channel enhances sensitivity to effects beyond the SM.

$$R_{\kappa}^{SM} = (2.477 \pm 0.001) \times 10^{-5}$$

Uncertainty is $\Delta R_{\kappa}/R_{\kappa} \sim 0.04\%$

K_{l2} decay beyond the SM

$$R = \frac{\Gamma(e^+\nu)}{\Gamma(\mu^+\nu)} = R_{SM} + \Delta R_{NP}$$

MSSM with LFV

Contribution from MSSM

• A charged Higgs-mediated SUSY LFV contribution to K_{e2} can be strongly enhanced by emitting a τ neutrino.

$$R_{K}^{LFV} = R_{K}^{SM} \left(1 + rac{m_{K}^{4}}{M_{H^{+}}^{4}} \cdot rac{m_{ au}^{2}}{m_{e}^{2}} \Delta_{13}^{2} an^{6} eta
ight)$$

Effects in pion decay is suppressed by a factor $(m_{\pi}/m_{K})^{4} \sim 6 \times 10^{-3}$

Using $\Delta_{13}=5\times10^{-4}$, tan $\beta=40$, $M_{H}=500$ GeV/c²

 $R_{K}^{LFV} = R_{K}^{SM} (1 \pm 0.013)$

SUSY with LFV

Comparison with LFV in τ decay

- LFV effect may be found in $\Delta R_{\rm K}$
- $\Delta R_{\rm K}/R_{\rm K} \approx 1\%$ corresponds to $Br(\tau \rightarrow eX) \leq 10^{-10}$
 - Strong correlation to Br ($\tau \rightarrow e\eta$)
 - Additive to $R_{\rm K}^{\rm SM}$ (no interference: $R_{\rm K} > R_{\rm K}^{\rm SM}$)
- Strong constraints to $M_{\rm H}$ as a_{μ} for large tan β

[Masiero, Paradisi and Petronzio; 2008]

Experimental status of $R_{\rm K}$

- KLOE @ DAFNE (in-flight decay) (2009) $R_{K} \times 10^{5}$ - $R_{K} = (2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$
- NA62 @ CERN (in-flight decay) (2011) - $R_{\rm K} = (2.488 \pm 0.007 \pm 0.007) \times 10^{-5}$
- World average (2011)

 $-R_{\rm K} = (2.488 \pm 0.009) \times 10^{-5}$ $\sigma(R_{\rm K})/R_{\rm K} = 0.0037$

• P36 aims for:

 $\sigma(R_{\rm K})/R_{\rm K}$ = 0.0020 (stat) ± 0.0015 (syst) Systematics :

In-flight-decay experiments : kinematics overlap
P36 stopped K⁺ : detector acceptance and target
Thorough systematic error analysis for P36

Experiment at J-PARC : P36

- High intensity beam of K^+
 - not the highest intensity of J-PARC (30 kW)
- Stopped beam experiment
 - different systematics from NA62
- Use of TREK detector
 - sub detector system of the TREK experiment
- Proposal was submitted PAC in June 2010
- Decision is made soon in July

Experimental setup

SC Toroidal magnet

$K_{e2}/K_{\mu 2}$ discrimination

- *e*/μ separation not only in momentum spectrum but with PID using TOF + Cherenkov counters
- Inclusion of radiative decay (CsI(Tl))
- Rejection of K_{e3} and $K_{\mu3}$

Tracking and PID

 $\mathsf{TOF}_{-\mathsf{stop}}$

KEK-PS E246

J-PARC P36

CsI(Tl) calorimeter

Decay modes

Decay mode	Branching ratio	Relative intensity	Momentum(MeV/c)
$K^+ \to e^+ \nu$	1.6×10^{-5}	1	247
$K^+ ightarrow \mu^+ u$	$6.3 imes 10^{-1}$	40000	236
$K^+ \to e^+ \nu \gamma (IB)$		~ 0.1	
$K^+ \to e^+ \nu \gamma(SD)$	1.5×10^{-5}	~ 1	
$K^+ ightarrow e^+ u \pi^0$	$4.8 imes 10^{-2}$	3000	$<\!\!228$
$K^+ o \mu^+ \nu \gamma$	5.5×10^{-3}	400	
$K^+ o \mu^+ u \pi^0$	3.2×10^{-2}	2000	<215

" $K^+ \rightarrow e^+ v \gamma$ (SD)" is now a disturbing background

IB and SD

$$x \equiv \frac{2E_{\gamma}}{M_{\nu}}$$
 and $y \equiv \frac{2(E_l + M_l)}{M_{\nu}}$

$$\frac{d\Gamma_{K_{\mu\nu\gamma}}}{dxdy} = A_{IB}f_{IB}(x,y) + A_{SD}[(F_V + F_A)^2 f_{SD^+}(x,y) + (F_V - F_A)^2 f_{SD^-}(x, - A_{INT}[(F_V + F_A)f_{INT^+}(x,y) + (F_V - F_A)f_{INT^-}(x,y)]$$

$$\begin{split} f_{IB}(x,y) &= \left[\frac{1-y+r}{x^2(x+y-1-r)}\right] \\ &\times \left[x^2+2(1-x)(1-r)-\frac{2xr(1-r)}{x+y-1-r}\right], \\ f_{SD^+} &= \left[x+y-1-r\right][(x+y-1)(1-x)-r], \\ f_{SD^-} &= \left[1-y+r\right][(1-x)(1-y)+r], \\ f_{INT^+} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][(1-x)(1-x-y)+r], \\ f_{INT^-} &= \left[\frac{1-y+r}{x(x+y-1-r)}\right][x^2-(1-x)(1-x-y)-r], \end{split}$$

$$r = \left[\frac{M_l}{M_K}\right]^2,$$

$$A_{IB} = \Gamma(K_{l2})\frac{\alpha}{2\pi}\frac{1}{(1-r)^2},$$

$$A_{SD} = \Gamma(K_{l2})\frac{\alpha}{8\pi}\frac{1}{r(1-r)^2}\left[\frac{M_K}{F_K}\right]^2,$$

$$A_{INT} = \Gamma(K_{l2})\frac{\alpha}{2\pi}\frac{1}{(1-r)^2}\frac{M_K}{F_K}.$$

CsI(Tl) data

Figure 16: Flow chart for the data handling. The experimental and simulation data are analyzed by the same program codes. The accepted events after applying the analysis are separated into four categories: no photon detection (D0) for e^+ (D0e) and μ^+ (D0 μ), and one photon detection (D1) for e^+ (D1e) and μ^+ (D1 μ).

Photon detection

Overview of the analysis

Number of accepted events

 $\widetilde{\mathsf{N}}(K_{e2}) = \mathsf{N}(K_{e2}) + \mathsf{N}(K_{e2\gamma})$ $\widetilde{\mathsf{N}}(K_{\mu2}) = \mathsf{N}(K_{\mu2}) + \mathsf{N}(K_{\mu2\gamma})$

 $N(K_{e2}) = N_K \times \Omega(K_{e2}) \times Br(K_{e2}),$ $N(K_{\mu 2}) = N_K \times \Omega(K_{\mu 2}) \times Br(K_{\mu 2}).$ $\Gamma(K_{e2})/\Gamma(K_{\mu 2}) = N(K_{e2})/N(K_{\mu 2}) \cdot \Omega(K_{\mu 2})/\Omega(K_{e2}).$ $= N(K_{e2})/N(K_{\mu 2}) \cdot N(K_{\mu 2})^{\text{MC}}/N(K_{e2})^{\text{MC}}$

K_{e2} spectra in D0

Emission of external bremsstrahlungs photon

 $K_{e2\gamma}^{IB}$ and $K_{\mu 2\gamma}^{IB}$ in D0

 $K_{e2\gamma}^{IB}$ (red) and $K_{e2\gamma}^{SD}$ (black) in D1

SD components

較正実験と系統誤差

Estimate of $\Omega(K_{e2})/\Omega(K_{\mu 2})$ ratio

- $\Box \, \delta R_K / R_K = \delta Q / Q + \bullet \bullet \bullet \bullet \quad [Q = \Omega(K_{e2}) / \Omega(K_{\mu 2})]$
- Most essential source of the systematic error
- Detection of K_{12(γ)}
 (A) Momentum spectrum (spectrometer)
 (B) PID (Aerogel Cherenkov + TOF + Lead glass counter)
 (C) γ detection (CsI(Tl) for radiative decays
- (A) is most difficult to estimate. Error comes from:
 - Different momentum of $K_{e2} / K_{\mu 2}$ (247/236 MeV/c)
 - Different interactions in the target material
- Estimate of Q also by using data desirable
Q estimate by a MC simulation

$$Q = \frac{N_{MC}^{accpt}(K_{e2}: B = 1.4\mathrm{T})}{N_{K_{e2}}^{decay}} / \frac{N_{MC}^{accpt}(K_{\mu 2}: B = 1.4\mathrm{T})}{N_{K_{\mu 2}}^{decay}}$$

- Use of the MC code used in E246
- Precise geometry input needed
- Physics input: *K*⁺ distribution
- Checked by using data
- 100 times more events in P36 than in E246
- However, the result has to be checked by using data

Use of $K_{\mu 2}$ peak

- Calibration run with reduced field to realize the same trajectory distribution
 - *n*: beam normalization
 between two runs
 β: magnetic field effect

Precise field calculation, and
Tracking simulation needed

$$= \frac{N(K_{\mu 2}; B = 1.34 \text{ T})}{N(K_{\mu 2}; B = 1.4 \text{ T})} \times \beta \times n,$$

• Error arises from the uncertainty of corrections, *n* and β

Use of $K_{\mu3}$ spectrum

- Use of wide *p* spectrum • Calibration run with reduced field of 0.9 T 164 MeV/c : 247 MeV/c Ke2 $157 \text{ MeV/c} : 236 \text{ MeV/c} \text{ K}\mu 2$
 - α : spectral ratio
 - β : magnetic field effect
- γ : CsI(Tl) efficiency effect

One calibration run: no necessity of beam normalization Most promising method

$K_{\mu3}$ method with E246 data

• Validity check with E246 data at reduced magnetic field of 0.9 T

- A. MC Dalitz plot of $K_{\mu3}$
- B. Experimental Dalitz plot
- C. Acceptance plot : B/A
- D. CsI(Tl) efficiency curve
- E. Projection of C onto p_{μ}
- F. Spectrometer acceptance curve F = E/D

Q = F(164 MeV/c) / F(157 MeV/c)

•Main error comes from 1.Ambiguity of the FF in the A and D

 $\frac{1}{250}$ 2.Energy loss correction in the target

 $\delta R_{\rm K}/R_{\rm K} = 0.00078$:

same for P36

Chamber efficiency

- Efficiency calibration by means of "Sandwich Method"
- Use of real data or calibration run data

PID performance

• Particle identification by

- a) TOF
- b) Aerogel Cherenkov (AC)
- c) Lead Glass (PGC)

•Efficiency calibration with the

"sandwich method" using real K_{e2} data.

Element for check	Tracking elements	PID
AC	C1, C2, C3, C4	TOF⊗PGC
TOF	C1, C2, C3, C4	AC⊗PGC
PGC	C1, C2, C3, C4	TOF⊗AC

- K_{e2} statistics limits the accuracy of PID efficiency to $\delta R_{\rm K}/R_{\rm K}$ = 0.00035
- We may also use K_{e3} events at reduced field

Subtraction of structure dependent $K_{l2\gamma}$

(a)

SD subtraction - CsI(Tl) efficiency -

- Photon detection uncertainty arise from:
 - Effective solid angle depending on $\rho(K^+)$
 - Instability of detection threshold $E_{\rm th}$
 - Clustering efficiency depending on event rate
- Main effect in P36 is the detection efficiency of $K_{e2\gamma}$ (SD dominated), which is used for the D0-SD subtraction. Other effects are relative harmless.

Backgrounds

- Physics backgrounds A. In-flight μ^+ decay B. Photon conversion
- Beam origin accidentals C. Beam hit in CsI(Tl)
 - D. Beam hit in AC
 - E. K^+ to K^0 conversion ^(a)
 - F. K^+ in-flight decay

= 247 MeV/c

Target interaction

Uncertainty of e^+/μ^+ penetration length produces an error

• Error due to decay vertex resolution

Interaction	Probability uncertainty
Bremsstrahlung for positrons	0.038%
Annihilation for positrons	$\leq 0.010\%$
Photon conversion for both decays	0.010%
Total	0.041 %

 $\delta R_{\rm K}/R_{\rm K} = 0.00041$

• Error due to material thickness uncertainty

Interaction	Relevant to	Correction error	$\Delta R_K/R_K$
Bremsstrahlung (rejected)	$ ilde{K}_{e2}$	0.003	2×10^{-4}
Annihilation in flight	$ ilde{K}_{e2}$	$\ll 10^{-4}$	$\ll 10^{-4}$
Photon conversion	$K_{e2\gamma}, K_{\mu 2\gamma}$	3×10^{-3}	$\sim 10^{-5}$
Total			2×10^{-4}
δR _K /F	0		

Summary of systematic errors

Error source	$\Delta R_K/R_K$ Comment		Addendum 1	
(1) Detector performance				
Chamber efficiency	0.0004	Method-1	0.00035	
PID performance	0.00035	$K_{e2}/K_{\mu2}$ run	0.00035	
CsI(Tl) performance	0.0007	Ambiguity of efficiency		
Trigger and DAQ	small	to be measured		
(2) Background				
Muon decay in flight	0.00015	Distance to AC	0.00025	
Photon conversion	0.0002		0.0002	
CsI(Tl) beam hit	0.00018		0.0004	
AC beam hit	0.0001		< 0.0001	
K^+ conversion	0.00003		< 0.0001	
(3) Analysis				
Code and cut parameters	small	$\ll 0.001$		
SD subtraction	0.00036		0.00036	
(4) \mathbf{MC} simulation			< 0.001	
Acceptance ratio	0.00078	based on E246		
Magnetic field	small	< 0.0001		
Input parameters	small	$\ll 0.0001$		
Kaon stopping distribution	0.00015			
Target interactions	0.0004		0.0002	
Material thickness	0.0002			
IB theory	small	$\ll 0.001$		
Total	0.0015		0.0013	

 $\delta R_{\rm K}/R_{\rm K}$ (syst) = 0.0015 while $\delta R_{\rm K}/R_{\rm K}$ (stat) = 0.0020

Impact of P36

Constraint on LFV SYSY (90% C.L.)

- A single experiment cannot go beyond its systematic error limit.
- More than two experiments can reduce the systematic limit.
- The combined average with NA62 might be able to indicate a significant deviation from the SM prediction.

重いニュートリノの探索

LUV 実験の 副産物物理

Search for heavy sterile \mathbf{v} (N) in $K^+ \rightarrow \mu^+ N$

- In the framework of renormalizable extension of the SM, the vMSM, 3 light singlet right-handed v (sterile v) are introduced.
- The vMSM can simply explain :
 - v oscillation
 - Light sterile v play a role of dark matter.
 - Baryon asymmetry can be induced by leptogenisis through v oscillation.

 $L_{\rm N} = -1/\sqrt{2} f_{\alpha} L_{\alpha} (N_2 + N_3) \Phi - M_2 N_2^{\rm c} N_2/2 - M_3 N_3^{\rm c} N_3/2 + h.c.$

BR in vMSM

Gninenko and Gorbunov, hep-ph/0907.4666v1

 $BR \le 10^{-6}$ for three "extreme hierarchies" of Yukawa couplings ; $f_e : f_{\mu} : f_{\tau}$

Experimental method

- Two body decay: $p(\mu^+)$ is monochromatic.
- μ^+ polarization is large.
 - μ^+ are generated through right-handed current.
 - The E246 polarimeter will be put behind C4.
- Two settings of spectrometer field: 0.65 T, 1.4 T.
 - 1.4 T: only veto1 will be used. Data will be taken with the $R_{\rm K}$ experiment.
 - 0.65 T: K_{μ} 3 with a 2 photon escape is serious background.
 - Veto counters will be installed.

Photon veto

In order to suppress the main B.G. of $K_{\mu3}$ with two γ 's escaping

Experimental sensitivity

Assumption

- $\sigma_p = 1 \text{MeV}/c$
- pectrometer field = 0.65 T
- running time: 30 days

Sensitivity

• $BR(K^+ \rightarrow \mu N) \sim 10^{-8}$

ビームライン

Hadron Experimental Hall

K1.1BR beam line

Operation beam momentum p	800 MeV/c
Length of the beam line	20.3 m
K^+ intensity at p	$2 \times 10^5 / s$ @30 kW
K^+/π^+ ratio at p	${\sim}2$
Beam spot size at final focus	$1 \text{ cm [H]}, 1 \text{ cm[V]} \text{ in } \sigma$
R_{16}, R_{26}	$R_{16} < 0.1 \text{ cm}/\%, R_{26} = 17.6 \text{ mr}/\%$
Acceptance	$4.5 \text{ msr\%} (\delta p/p)$
Momentum bite	$\pm 3\%$

Beam Cherenkov counter

Fitch type differential Cherenkov counter

Kaon separation curve

Beam tuning in November 2010

Kaon beam spot at FF

Detector R&D

Detector upgrade

Aerogel Cherenkov counter

• 2nd Prototype counter

Polygonal mirror

C1: Planar GEMs for P36

• For higher tracking performance Muon holes

12 C1 triple-GEMs to cover muon holes of CsI(Tl)

Stereo readout in shadow of CsI crystals based on APV25-S1 (128 channels per chip)

Active length (z)	480 mm
Active width (y)	200 mm
Spatial resolution	<100 μm
Readout strips: pitch	400 μm
No. of channels (z)	1200 (< 10 x 128)
No. of channels (y)	500 (< 4 x 128)
Total no. of channels	1700
APV chip per chamber	14
Total cost (\$\$)	350,000

Prototype 10x10 cm²

• Beam tests at FNAL

CsI(Tl) Readout

• For higher rate performance

- Possible 3 candidate schemes:
 - PIN-diode readout (same as in E246)
 - Best K/π ratio is required (Beam line K1.1BR)
 - APD readout (developed in 2010)
 - Already established, but rather expensive
 - MAPD readout (development in progress now)
 - Good *S/N* ratio, and cost effective
 - Rate capability test @ TRIUMF in autumn of 2011

There is still rate dependence
Better one is now being developed

Target for P36

For better tracking resolution

- 256 pieces of
- 3 x 3 x 200 mm³ SciFi
- WLS fiber of ~1m
- MPPC readout
- EASIROC electronics
- Production in Canada 200 mm

Scintillating Fibres (x16)

TREK Collabortion Meeting (Nov. 5" 2011

TRIUMF 2

Time schedule

	2012	2013	2014	2015	2016		l later
			l L	 			
	R&D etc.	Detector construction		 		「 — 	
P36		He refrigerat	tor installation			· 	
				Run@K1.1BR		 	
		1					
			Polarimeter c			 	
E06		 		(If K1.1BR available)	Run@K1.1BR		
					(If K1.1BR not available)		Run in extended Hadron Hall ?

Summary

- Violation of lepton universality is a sensitive probe of LFV SUSY interaction.
- $R_K = \Gamma(K_{e2})/\Gamma(K_{\mu 2})$ is a good channel to search for LU violation.
- J-PARC P36 experiment aims for the sensitivity of $\delta R_K / R_K = 0.25\%$.
- We aim to run P36 in 2015. The detector is now being prepared.
- Participation of young people are very welcome.

J-PARC accelerator complex

Proton accelerators in the world

$K_{\mu 2}$ momentum spectrum

Aerogel Cherenkov counter

図 1:AC カウンターの概念図

GEM test at FNAL

- 120 GeV proton beam from Main Injector
- unseparated secondary beam at 32 GeV, 16 GeV, 8 GeV and 4 GeV

Telescope of 3 Triple GEM prototypes (10 x 10 cm²) using TechEtch foils Middle detector rotatable $\pm 30^{\circ}$

> F. Simon et al., IEEE2007, arXiv:0711.3751

Experimental status summary

Measurement	Kaon Beam	PID	$R_K~(imes 10^{-5})$	$\Delta R_K/R_K$
PDG08 [1]			$2.45{\pm}0.11$	5%
KLOE [13]	In-flight	E/p and TOF	$2.493{\pm}0.025{\pm}0.019$	1.3%
	$(\phi \to K^{\pm})$			
NA62 [14]	In-flight	E/p	$2.500 {\pm} 0.016$	0.4%
	$(\mathbf{p}(K^{\pm}) =$			
	$74~{ m GeV}/c$)			
TREK	Stopped K^+	TOF and \hat{C}		0.2%
SM [38]			$2.472 {\pm} 0.001$	0.04%
Measurement	Pion Beam	PID	$R_{\pi}(imes 10^{-4})$	$\Delta R_\pi/R_\pi$
PDG08 [1]			$1.230{\pm}0.004$	0.3%
PIBETA [39]	stopped π^+	E/p	$1.2346 {\pm} 0.0035 {\pm} 0.0036$	0.4%
Britton et al. [40]	stopped π^+	$\pi ightarrow \mu ightarrow e$	$1.2265 {\pm} 0.0034 {\pm} 0.0044$	0.4%
PEN [30]	stopped π^+	E/p		< 0.05%
PIENU [31]	stopped π^+	$\pi \to \mu \to e$		< 0.1%
SM [1]			$1.2353 {\pm} 0.0004$	0.03%

Status of $K_{\rm e2}/K_{\mu 2}$

Is the 1.9 σ deviation a significant effect?

Statistical error

50 days @ 30 kW

statistics

1. Beam:1500kW • day (= 30 kW • 50 days)1x10122. Kaon stopping eff.: 0.253. Branching ratio of K_{e2} :1.55x 10^{-5}4. Detector acc.: 0.073x10⁵

Statistical error
$$\Delta R_K / R_K = 0.2\%$$

Expectation

KEK-PS E99 experiment

Hayano et al. 1982

Comparison with E99

Items	KEK-PS E99	This proposal
$\Omega(\mu^+)$	0.8%	7%
$\Omega(\pi^0)$	92%	>99.9%
spectrometer	dipole, 4 trackers	toroidal, 4-5 trackers
$\operatorname{calorimeter}$	$11.5X_0 \text{ NaI(Tl)}$	$13.5X_0 \operatorname{CsI}(\operatorname{Tl})$
μ^+ polarimeter	not used	used
sensitivity	10^{-6}	10^{-8}

$$\begin{array}{ll} |U\mu i|^2 &< 10^{-5} \mbox{ for } \mu_{\rm vi} = 100 \mbox{ MeV}/c^2 \\ &< 10^{-6} \mbox{ for } \mu_{\rm vi} = 200 \sim 300 \mbox{ MeV}/c^2 \end{array}$$

CERN PS191 experiment

Result of PS191

Lepton universality

- Standard Model: – Three generations for quarks and leptons – Leptons: $e, \mu, and \tau$ $\begin{pmatrix} v_e \\ e \end{pmatrix} \begin{pmatrix} v_{\mu} \\ \mu \end{pmatrix} \begin{pmatrix} v_{\tau} \\ \tau \end{pmatrix}$
 - Different masses but same gauge couplings
 - Up to now, it is valid experimentally

Lepton Universality

Even a small difference would signal a profound discovery : → *Necessity of experimental efforts*

Related (or remaining) questions:

- 1. Why are there three generations?
- 2. Why are the weak couplings of e, μ , and τ nearly equal?
- 3. Why are their masses so different?
- 4. Why weak bosons couple to leptons in a single generation?

NA62 experiment at CERN

PIENU experiment at TRIUMF Measurement of $R_{\pi} = \pi_{e2} / \pi_{\mu 2}$ $R_{\pi}^{SM} = (12.352 \pm 0.001) \times 10^{-5}$

aims for $\Delta R_{\pi}/R_{\pi} = 0.1\%$

c.f. PEN experiment @ PSI $\Delta R_{\pi}/R_{\pi} < 0.05 \%$

KLOE experiment at $DA\Phi NE$

K+*K*□

• $\beta = 0.245$

•
$$p^* = 127 \text{ MeV}/c$$

• $\Box \lambda_{\pm} = 95 \text{ cm}$

KLOE detector

DC (4 m^{\$\phi\$} x 3.3m^L)
 EMC (Pb/SciFi)

•SCM (0.52 T)

 $K^{\pm}_{e2(\gamma)}: K^{\pm}_{\mu2(\gamma)}$ measurement

$$R_K = (2.493 \pm 0.025 \pm 0.019) \times 10^{-5}$$

 K_{e3}/K_{u3}

$$\begin{split} &\Gamma(\mathbf{K}_{\mu3})/\Gamma(\mathbf{K}_{e3}) = (\boldsymbol{g}_{\mu}/\boldsymbol{g}_{e})^{2} \times R_{\text{pre}} \\ &R_{\text{pre}} = 0.6457 - 0.1531\lambda_{+} + 1.5646 \,\lambda_{0} \\ &f_{0}(q^{2}) = f_{+}(q^{2}) + \left[q^{2}/(m_{\text{K}}^{2} - m_{\pi}^{2})\right] f_{-}(q^{2}) \\ &\sim f_{+}(0) \left[1 + \lambda_{0}(q^{2}/m_{\pi}^{2})\right] \end{split}$$

KEK-PS E246

$$\begin{split} &\varGamma(K_{\mu3})/\varGamma(K_{e3}) = 0.671 + 0.009 \quad [E246] \\ &\lambda_{+} = 0.0278 + 0.0040 \quad [E246] \\ &\lambda_{0} = 0.039 + 0.0040 \quad [Ref.] \end{split}$$

- $p_{\mu/e}$ measurement
- π^{0} detection as 2γ in CsI

•
$$K_{\rm e3}/K_{\mu3}$$
 discrim. with TOF

 $g_{\mu}/g_{e} = 0.971 + 0.019$ $(g_{\mu}f_{+}^{\mu}(0) / g_{e}f_{+}^{e}(0) = 0.971 + 0.019)$

Consistent with one !

Efficiency determination

- PID performance and chamber efficiencies will be directly measured by using experimental data.
- We can easily accumulate sufficient K_{e3} and $K_{\mu3}$ events by changing the magnetic field to B=0.65 T.

Data taking

