First Result from XENON10 Dark Matter Experiment at Gran Sasso Laboratory

Masaki Yamashita Columbia University Seminar at ICEPP, University of Tokyo

http://xenon.astro.columbia.edu

Masaki Yamashita

Dark Matter Problem

Existence of dark matter is required by a host of observational data: galactic halos, clusters of galaxies, large scale structures, CMB, high-redshift SN_e Ia.

Baryonic Matter - Mostly known Visible Matter (stars) only ~1% of the total. Non-Baryonic Dark Matter New Particle -SUSY

Observations(gravitational lensing)

D. Clowe et al.. 2006

Bullet Cluster merger of two galaxy

A titanic collision between two massive galaxy clusters

M. J. Jee and H. Ford

encourage Direct Dark Matter Detection.

UCLA 2007/06/06

Masaki Yamashita

Weakly Interacting Massive Particle

Dark Matter is required to be

- Neutral
 - ⇒can not see ...
- Non-baryon
- Mass
 - ⇒gravitational effect
- Cold (non-relativistic)
 - ➡structure formation

SUSY

- to prevent rapid proton decay a discrete symmetry (R-parity) is imposed
 - \rightarrow R = (-1)^{3B+L+2S}, B = baryon number, L = lepton number
 - \rightarrow R = 1 for SM particles, R = -1 for SUSY
 - \Rightarrow the lightest SUSY particle is stable and likely becomes a dark matter candidate

Linear combination of susy particles

$$\chi_1^0 = \alpha_1 \tilde{\boldsymbol{B}} + \alpha_2 \tilde{\boldsymbol{W}} + \alpha_3 \tilde{\boldsymbol{H}}_u^0 + \alpha_4 \tilde{\boldsymbol{H}}_d^0$$

Approaches to Dark Matter Detection

Direct

Indirect

Colliders

WIMPs:

10⁶ per second through your thumb without being noticed!

10¹⁵ through a human body each day: only < 1 will interact, the rest is passing through unaffected!

If their interaction is so weak, how can we detect them?

WIMP Detection: Scattering off Atoms

M. Attisha

Direct Detection Principle WIMPs elastically scatter off nuclei in targets, producing nuclear recoils.

UCLA 2007/06/06

Masaki Yamashita

Direct Detection Principle WIMPs elastically scatter off nuclei in targets, producing nuclear recoils.

Xe (A=131) is one of the best target

UCLA 2007/06/06

Masaki Yamashita

Direct Detection Experiments (background rejection)

CDMS

• Spin-Independent WIMP upper limits (90% CL) and SUSY predictions:

Why Liquid Xenon?

- High Atomic mass Xe (A~131) good for SI case (cross section $\propto A^2$)
- Odd Isotope (Nat. abun: 48%, 129,131) with large SD enhancement factors
- High atomic number (Z~54) and density (ρ =3g/cc):
 - compact, flexible and large mass detector.
- High photon yield (~ 42000 UV photons/MeV at zero field) and high charge yield
- - Easy to purify for both electro-negative and radioactive purity

by recirculating Xe with getter for electro-negative

Charcoal filter or distillation for Kr removal

The XENON Collaboration

Columbia University

Elena Aprile, Karl-Ludwig Giboni, Sharmila Kamat, Maria Elena Monzani, Guillaume Plante*, Roberto Santorelli, Masaki Yamashita **Brown University** Richard Gaitskell, Simon Fiorucci, Peter Sorensen*, Luiz DeViveiros* Aachen, University of Florida Laura Baudis, Jesse Angle*, Joerg Orboeck, Aaron Manalaysay* Lawrence Livermore National Laboratory Adam Bernstein, Chris Hagmann, Norm Madden and Celeste Winant **Case Western Reserve University** Tom Shutt, Eric Dahl*, John Kwong* and Alexander Bolozdynya **Rice University** Uwe Oberlack, Roman Gomez* and Peter Shagin Yale University Daniel McKinsey, Richard Hasty, Angel Manzur*, Kaixuan Ni LNGS Francesco Arneodo, Alfredo Ferella* **Coimbra University** Jose Matias Lopes, Joaquin Santos, Luis Coelho*, Luis Fernandes

FLORIDA

XENON consists of US and European institutes.

UCLA 2007/06/06

Masaki Yamashita

Charge and Light in Noble Liquids

and (most of the) background (gammas=>ER)!

time constants depend on gas (few ns/15.4µs Ne, 10ns/1.5µs Ar, 3/27 ns Xe)

Event Discrimination: Electron or Nuclear Recoil

Particle ID

ICEPP 向け

	MEG	XENON
rate[Hz]	10 ⁵ -10 ⁶	~3
signal	S	S+Q
size	300 kg, 2.4 ton	15kg, 1 ton, 10 ton
PMT	2 inch	1 inch

XENON10 at LNGS

Corno Grande

Masaki Yamashita

The Gran Sasso underground

Lab

Main research lines:

- Neutrino physics
- Dark matter
- Nuclear astrophysics
- Gravitational waves
- Geophysics
- Biology

UCLA 2007/06/06

3 experimental halls: 100 m long, 20 m wide, 18 m high (total underground area: 18,000 m²)

- Natural temperature: 6° C
- Relative humidity: 100%
- Jocation: 963 m over sea level

XENON10 at the Gran Sasso Laboratory

XENON10 at the Gran Sasso Laboratory

Installation of XENON10 at LNGS on July

Lead

UCLA 2007/06/06

Masaki Yamashita

XENON10 Detector 48 PMTs on top

- 48 PMTs on top, 41 on bottom,
 - Hamamatsu R8520 PMT:Compact metal channel:
 - 1 inch square x 3.5 cm
 - Quantum Efficiency: >20% @ 178 nm
- 20 cm diameter, 15 cm drift length
- 22 kg needed to fill the TPC. Active volume 15 kg.
- 3D position sensitive TPC
 - Z-position: Drift Time, X-Y position: Top array of PMTs (neural network)

UCLA 2007/06/06

• Hamamatsu R8520 1"×3.5 cm

- bialkali-photocathode Rb-Cs-Sb,
- Metal Channel; 10 dynodes
- Quartz window; at -100°C and 5 bar
- Quantum efficiency > 20% @ 178 nm

• Hamamatsu R8520 1"×3.5 cm

- bialkali-photocathode Rb-Cs-Sb,
- Metal Channel; 10 dynodes
- Quartz window; at -100°C and 5 bar
- Quantum efficiency > 20% @ 178 nm

• Hamamatsu R8520 1"×3.5 cm

- bialkali-photocathode Rb-Cs-Sb,
- Metal Channel; 10 dynodes
- Quartz window; at -100°C and 5 bar
- Quantum efficiency > 20% @ 178 nm

R8520-06-AL QE High-QE trial tube 35 30 % Hamamatsu R8520 1"×3.5 cm Quantum Efficiency [3 25 25 3 21 25 bialkali-photocathode Rb-Cs-Sb, • Metal Channel; 10 dynodes 10 This information is furnished for your information only • Quartz window; at -100°C and 5 bar expressed or implied, is created by furnishing this informat 155 160 165 170 175 180 185 190 195 200 205 210 215 220 225 Quantum efficiency > 20% @ 178 nm Wavelength [nm]

• Low Radioactivity: U/Th/K/Co measured as 0.17±0.04/0.20±0.09/10±1/0.56±0.05 mBq/PMT

R8520-06-AL QE High-QE trial tube QEAt room temperature 35 Qe increases by about 30% 30 % • Hamamatsu R8520 1"×3.5 cm at 165K Quantum Efficiency [3 25 25 3 21 25 bialkali-photocathode Rb-Cs-Sb, • Metal Channel; 10 dynodes 10 This information is furnished for your information only • Quartz window; at -100°C and 5 bar 155 160 165 170 175 180 185 190 195 200 205 210 215 220 Quantum efficiency > 20% @ 178 nm Wavelength [nm]

• Low Radioactivity: U/Th/K/Co measured as 0.17±0.04/0.20±0.09/10±1/0.56±0.05 mBq/PMT

XENONIO Calibration by Activated Xe

- Position dependency correction by looking at activated line.
 - Uniform source in the whole detector
- Activated Xe (5x10⁶ n/s Cf, ~ 2 weeks)
- 164 keV Xe131-m, 236 keV Xe129-m (half life ~ 10 days)
- Injected ~ 200 g activated Xe gas into detector

XENON10 nuclear and electron recoil band calibration

AmBe Neutron Calibration (NR-band) In-situ Dec 1, 2006 (12 hours) Source (~3.7MBq) in the shield

Cs-137 Gamma Calibration (ER-band) In-situ Weekly calibration Source (~1kBq) in the shield

XENON10 Background Rejection Power

~ 99.5 % rejection power For 50% Nuclear Recoil Acceptance

XENON10 Blind Analysis Cuts Energy Window: 2-12 keVee (based on 2.2 pe/keVee)

- Basic Quality Cuts (QC0): remove noisy and uninteresting events
- Fiducial Volume Cuts (QC1): capitalize on LXe self-shielding
- High Level Cuts (QC2): remove anomalous events (S1 light pattern)

Fiducial Volume chosen by both Analyses:

15 < dt < 65 us, r < 80 mm

Fiducial Mass= 5.4 kg (reconstructed radius is algorithm dependent)

Overall Background in Fiducial Volume ~0.6 event/(kg d keVee)

Performance of QC2 Cut (S1 RMS Cut) on Search Data

WS003+WS004 (58days)

- 5 "non-Gaussian" events remain after all QC2 cuts on the WIMP search data.
- The sigma of delta log10(S2/S1) shows higher number (+0.09, 2-12 keVee) → the "gaussian leakage" events estimated from 137Cs data appear to be too conservative before opening the box.
- These non-Gaussian events will be studied by modifying the detector to remove a large fraction of dead LXe layers. We note that these events appear mostly at higher energies. 4 of these have been cut by the Secondary Analysis QC2 cuts.
- "Blind" analysis has provided a good sample to study these evens since the origin is different from 137Cs.

- Sum of S2 signal from Top PMTs was used for trigger.
- The threshold for S2 is 300 photoelectron (~ 10 ionization electrons) .
- A gas gain of a few hundred allows 100% S2 trigger efficiency.
- The S1 signal associated with an S2 signal was searched for in the off-line analysis.
- The coincidence of 2 PMT Hits is used in the analysis and the S1 energy threshold is set to 4.4 photoelectrons. Its efficiency is ~ 100%. (2keVee)
- The QC2 cuts efficiency varies between 95% and 80% in the 2-12 keVee energy window.

Neutron MC Simulations

- Very low threshold achieved
- Very good agreement with MC in over all range
- It is true that some uncertainty at low energy (20-35% error in sensitivity curve)
- We take average 19% but new measurement is planned for <5 keVr.

XENON10 WIMP Search Data with Blind Cuts

136 kg-days Exposure= 58.6 live days x 5.4 kg x 0.86 (ε) x 0.50 (50% NR)

Er = Ee/Leff · Se/Sr = S1tot (pe)/3.0 pe/keV/0.19*0.54*0.93

2 – 12 KeVee → 4.5 –27 KeVr

The events in the WIMP search box

- We think the 5 non-gaussian events are not likely WIMP events
 - ➡No1 noise glitch
 - ➡No 2, 6, 8, 10
 - clustered in lower part
 - The expected nuclear recoil spectrum for both neutron and WIMP falls exponentially where as not in this case.

Last Week ... Now data taking started

XENON10 Experimental Upper Limits Spin Independent case

XENON10 WIMP Search Results for SD Interactions

- natural Xe: ¹²⁹Xe, 26.4 %, spin 1/2, ¹³¹Xe, 21.2%, spin 3/2
- use shell-model calculations by Ressel and Dean [PRC 56, 1997] for $\langle S_n \rangle$, $\langle S_p \rangle$
- upper limits: Yellin Maximal Gap method, no background subtraction

Dark Matter XENON10+

No R&D is needed !

Detector will be ready in this 2007.

XENON10+ Detector

Columbia-Rice-Zurich-Coimbra-LNGS

Dark Matter XENON10+

Summary

• XENON10: First Result http://arxiv.org/abs/0706.0039, submitted to PRL

- ⇒upper limit to Spin Independent WIMP-nucleus cross section
 - 4.5 x 10⁻⁴⁴ cm² at 35 GeV
- ➡upper limit to Spin Dependent WIMP-n cross section
 - 5.2 x 10⁻³⁹ cm² at 35 GeV

Single Phase VS Double Phase

Multi Purpose Experiment have been proposed by

XMASS (Xe), CLEAN (Ne) ...

Single phase detector is simple detector but ...

LXe	Single (S1 only)	Double (S1+S2)
Particle Id	not good	very good
Position Resolution	a few cm	a few mm
Energy Resolution	~3 %	~ 1 %
Multiple Scatter Cut	not good	very good