最新結果を踏まえた コライダー実験の将来展望

大阪大学・花垣和則 高エネルギー物理学将来計画検討小委員会

コメント

◆ 湯川秀樹「一つの学問には必ず,新しい仮説が どんどん生まれるロマンチックな時代と,重箱 の隅をつつくような細かい研究が続くアカデミ ズムの時代がある」

▶ 実験家

● 過去30年間重箱の隅をつついている
 ● ロマンチックな時代の幕開けは近い (はず)
 ◆ コライダー実験の将来はバラ色(のはず)

Lagrangian in the GWS Model

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$

 $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$

+ $eA_{\mu}(\bar{l}\gamma^{\mu}l) - \frac{g}{\sqrt{2}}[W^{\mu}_{+}(\bar{\nu}\gamma^{\mu}P_{L}l) + c.c.]$

 $\bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$

+ $\frac{2v\chi + \chi^2}{4} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $-\frac{m_l}{n}\chi(\bar{l}l) - \frac{m_\nu}{n}\chi(\bar{\nu}\nu)$

Lagrangian in the GWS Model

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$

 $- \frac{1}{\Lambda}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{\Lambda}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$

わかった気になるのは早過ぎ

 $- \bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_{L} + s_{\nu R}P_{R})\nu + \bar{l}\gamma^{\mu}(s_{l_{L}}P_{L} + s_{l_{R}}P_{R})l]$

+ $\frac{2v\chi + \chi^2}{\Lambda} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $-\frac{m_l}{n}\chi(\bar{l}l)-\frac{m_\nu}{n}\chi(\bar{\nu}\nu)$

怪し過ぎるヒッグスセクター

◆ ゲージ不変性から

- gauge boson massless
- ▶ fermion not necessarily massless ⇒ なぜ同じヒッグス機構?
- ◆ 湯川結合定数:新しい相互作用?
 - 全てのフェルミオンに固有の値
 - ⇒ なぜ結合する相手を認識できるのか?
- ◆ スピンゼロ?

 $\mathcal{L} = \bar{\nu}(i \not\partial - m_{\nu})\nu + \bar{l}(i \not\partial - m_{l})l + \frac{1}{2}(\partial_{\mu}\chi\partial^{\mu}\chi - \mu^{2}\chi^{2})$ $- \frac{1}{4}F^{i}_{\mu\nu}F^{i\mu\nu} + m^{2}_{W}W^{*}_{+\mu}W^{\mu}_{+} - \frac{1}{4}G_{\mu\nu}G^{\mu\nu} + \frac{m^{2}_{Z}}{2}Z_{\mu}Z^{\mu}$ + $eA_{\mu}(\bar{l}\gamma^{\mu}l) - \frac{g}{\sqrt{2}}[W^{\mu}_{+}(\bar{\nu}\gamma^{\mu}P_{L}l) + c.c.]$ $\bar{g}Z_{\mu}[\bar{\nu}\gamma^{\mu}(s_{\nu L}P_L + s_{\nu R}P_R)\nu + \bar{l}\gamma^{\mu}(s_{l_L}P_L + s_{l_R}P_R)l]$ + $\frac{2v\chi + \chi^2}{\Lambda} (g^2 W^*_{+\mu} W^{\mu}_{+} + \frac{\bar{g}^2}{2} Z_{\mu} Z^{\mu})$ $\frac{m_l}{m_l}\chi(\bar{l}l) - \frac{m_\nu}{m_l}\chi(\bar{\nu}\nu)$ ヒッグスの物理が新しい

GWS 模型を 超えて ◆ ラグランジアンがそもそも美しくないっ ☆ 階層性問題

◆ いわゆる"新しい物理": 超対称性, 余剰次元, …

▶ 力の大統一 → 重力も含めた超大統一?

7

▶ 暗黒物質

▶ 反物質消滅の手がかり

GWS 模型を 超えて ◆ ラグランジアンがそもそも美しくないっ ☆ 階層性問題 ◆ いわゆる"新しい物 LEP実験で 欠元.... 精密測定 70 結合定数の強さ PP 05 09 α_1^{-1} 電磁気力 ▶ 力の大統一 ? SUSYが無い時 1TeV付近に 留対称性粒子 α-1 弱い力 ▶ 暗黒物質 30 20 SUSYがある時 力が統 α⁻¹ 強い力 10 反物質消滅の手 10^{2} 10^{3} 10^{4} 10^{5} 10^{6} 10^{7} 10^{8} 10^{9} 10^{10} 10^{11} 10^{12} 10^{13} 10^{14} 10^{15} 10^{16} 10^{17} 10^{18} エネルギーのスケール(GeV) 7

GWS 模型を 超えて ◆ ラグランジアンがそもそも美しくないっ ☆ 階層性問題

◆ いわゆる"新しい物理": 超対称性, 余剰次元, …

▶ 力の大統一 → 重力も含めた超大統一?

7

▶ 暗黒物質

▶ 反物質消滅の手がかり

GWS 模型を 超えて

◆ ラグランジアンがそもそも美しくないっ

新しい物理の探索

◆ いわゆる"新しい物理": 超対称性, 余剰次元, …

▶ 力の大統一 → 重力も含めた超大統一?

7

▶ 暗黒物質

▶ 反物質消滅の手がかり

New Physics へ向けて

2つのアプローチ@コライダー

未知の粒子を直接生成

未知の粒子の 量子補正への寄与

ルミノシティフロンティア

Tunnel effect

Bファクトリー

- KEKB/PEP2

- SuperKEKB

- CESR

S

9

エネルギーフロンティア 多くの過去のコライダー - LEP - Tevatron/LHC - ILC

SuperKEKB

測定精度の向上で見えてくるもの

◆新しい物理の寄与の余地:10%程度

測定精度の向上で見えてくるもの

11

新しい物理の寄与の余地:10%程度

SM: $b \rightarrow s$ Penguin phase = ($c\bar{c}$) K⁰ + New Physics with New Phase $S_{bs} \neq S_{bc}, A_{DCP} \text{ can } \neq 0$

"b \rightarrow ccs: sin2 ϕ_1 " (SM reference) \implies deviation

新たなる複素位相を求めて

SM: $b \rightarrow s$ Penguin phase = ($c\bar{c}$) K⁰

K⁰

B⁰

	sir	$\mathbf{n}(2\beta^{\mathrm{eff}}) \equiv$	sin(2	$2\phi_1^{\text{eff}}$)	HFAG FPCP 2010
· · · · · · · · · · · · · · · · · · ·	Morld Ave				
D→CCS		laye			
\sim	Bollo			0.	$20 \pm 0.20 \pm 0.03$
	Delle		L 8	* 1	0.90 -0.19
ļ	Average :				U.50 -0.18
∘∕	Dabai -			0.	$57 \pm 0.08 \pm 0.02$
	Delle			- 0.0	$0.04 \pm 0.10 \pm 0.04$
∽.	Average				0.59 ± 0.07
	Dabai :				$0.90_{-0.20}_{-0.04}$
	Delle		★¶	0.	$30 \pm 0.32 \pm 0.08$
	Average				0.74 ± 0.17
				0.	$55 \pm 0.20 \pm 0.03$
0,	Delle		TE A		0.57 ± 0.08
Б	Average :			+θ	0.57 ± 0.17
× s		•		0.35 -0	$_{31} \pm 0.06 \pm 0.03$
	Delle Avorago :		ШЗ	0.04 ₋₀	$.25 \pm 0.09 \pm 0.10$
<u>-</u>	Riveraye ;		······································	l	
↓ vs	Bollo		N N		$0.55_{-0.29} \pm 0.02$
	Delle :			0.	$11 \pm 0.40 \pm 0.07$
	Rolaye -		···	• · - · - · • • · - · - · -	0.45 ± 0.24
↓ v	Bollo				0.00 -0.18
	Avorado '				0.03 -0.19
۰۰۰۰ ۳	BaBar				
			40	-0.40 ± 0.3	$52 \pm 0.00 \pm 0.10$
	RaBar '		- <u> </u>		0.40 ± 0.03
_ ~ ×	Average		0	0.20 ± 0.3	$0.2 \pm 0.07 \pm 0.07$
<u>×</u>	ReBar		····	·····	0.20 ± 0.03
		0		-0.	$12 \pm 0.71 \pm 0.00$
	BaBar	·····	- · - · - · - · - · - · - · - !	i	0.07 +0.03
	Average :			<u>-</u>	0.07 ± 0.03
	BaBar			0.01 + 0.1	31 + 0.05 + 0.09
	Average !			0.0.1 ± 0.0	0.01 ± 0.03
ייא־יאַ־ייע	BaBar	·····		0	86 + 0.08 + 0.03
+ _P _	Belle				$0.15 \pm 0.03^{+0.21}$
	Average				0.82 + 0.07
└ <u>··</u> · └		i			0.02 - 0.97
-2	-1	0		1	2

Prospect for $b \rightarrow sq\bar{q}$

Prospect $\delta(S_{b \to s}) \sim 0.012 @ 50ab^{-1}$

Charged Higgs Status and Prospects

Prospectsのまとめ

	Belle'06 (~0.5ab ⁻¹)	5ab-1	50ab-1
ΔS(φK ⁰)	0.22	0.073	0.029
ΔS(η'K ⁰)	0.11	0.038	0.020
$\Delta S(K_SK_SK_S)$	0.33	0.105	0.037
$\Delta S(K_S \pi^0 \gamma)$	0.32	0.10	0.03
Br(X _s γ)	13%	7%	6%
A _{CP} (X _s γ)	0.058	0.01	0.005
C ₉ [A _{FB} (K*II)]		11%	4%
C ₁₀ [A _{FB} (K*II)]		130%	4%
$Br(B^+ \rightarrow K^+ vv)$	<9Br(SM)	33ab ⁻¹ for	σ discovery
Br(B ⁺ →τν)	3.5σ	10%	3%
Br(B⁺ →μν)	<2.4Br(SM)	4.3ab ⁻¹ for	δσ <mark>discovery</mark>
$Br(B^+ \rightarrow D\tau\nu)$		7.9%	2.5%
Br(τ →μγ)	<45	<30	<8
Br(τ →μη)	<65	<20	<4
$Br(\tau \rightarrow 3\mu)$	<209	<10	<1
∆sin2φ ₁	0.026	0.016	0.012
$\Delta \Phi_2$ (ρπ)	68°—95°	3°	1°
$\Delta \Phi_3$ (Dalitz)	20°	7°	2.5°
ΔV _{ub} (injɛl.)	7.3%	6.6%	6.1%

どこに何があるか わからないので, 色々な崩壊を使い も々な物理量を測定 することが重要

LHC (ATLAS) の現状

LHC Status

- ◆ √s = 7 TeV で順調に運転
- 50ns bunch spacing (ave.~6colli./crossing)
- Peak luminosity ~ 3.3E33 cm⁻²s⁻¹
 - 予想よりも高いパフォーマンス

LHC Status

Higgs Production and Decay at LHC

$H \rightarrow \gamma \gamma \gamma (1.08 \text{fb}^{-1})$

- Resonance search
 - $\sigma \sim a$ few GeV for 120GeV Higgs
- Two isolated photon
 - ▶ p⊤ > 40 GeV, and 25 GeV

$H \rightarrow W(\rightarrow |\nu)W(\rightarrow |\nu) (1.7 \text{fb}^{-1})$

- Two isolated leptons
- ✤ Missing E_T > 30 GeV
- ✤ M_{II} < 50 (m_H<170) or 65 GeV (m_H>170 GeV)
- ✤ Transverse Mass MT

Ojet: gluon fusion like 1 jet: vector boson fusion like

$H \rightarrow W(\rightarrow |\nu)W(\rightarrow |\nu)$ Limit

◆ 154 < M_H < 186 GeVを棄却
 ◆ CMS: 147 < M_H < 194 GeV
 ◆ 軽いところにわずかなexcess

Combination (1.0-2.3fb⁻¹)

Prospects

◆ 発見はすぐそこっ

Prospects

✤ 発見はすぐそこっ

Prospects

✤ 発見はすぐそこっ

SUSY探索

New Physics探索現状

ATLAS Searches* - 95% CL Lower Limits (Status: SUSY 2011)

	MSUGRA/CMSSM : 0-lep + j's + E - mice	L=1.04 fb ⁻¹ (2011) [Preliminary] 980 GeV	$\tilde{\alpha} = \tilde{\alpha}$ mass	
	MSUGRA/CMSSM : 1-lep + j's + $E_{T miss}$	L=1.04 fb ⁻¹ (2011) [Preliminary] 875 GeV	= g mass	
	MSUGRA/CMSSM : multijets + $E_{T,miss}$	L=1.34 fb ⁻¹ (2011) [Preliminary] 680 GeV $\widetilde{ m g}$ ma	ss (for $m(\widetilde{q}) = 2m(\widetilde{g})$)	AILAS
	Simpl. mod. (light $\tilde{\chi}_{\bullet}^{0}$) : 0-lep + j's + $E_{T,\text{miss}}$	L=1.04 fb ⁻¹ (2011) [Preliminary] 1.075 Te	i q̃ = g̃ mass	Preliminary
	Simpl. mod. (light $\tilde{\chi}_{n}^{U}$) : 0-lep + j's + $E_{T,\text{miss}}^{U}$	L=1.04 fb ⁻¹ (2011) [Preliminary] 850 GeV	mass	
	Simpl. mod. (light $\tilde{\chi}_1^{\circ}$) : 0-lep + j's + $E_{T,\text{miss}}$	<i>L</i> =1.04 fb ⁻¹ (2011) [Preliminary] 800 GeV \widetilde{g}	nass	$dt = (0.031 - 1.60) \text{ fb}^{-1}$
	Simpl. mod. (light $\tilde{\chi}_{0}$) : 0-lep + b-jets + j's + $E_{T,miss}$	L=0.83 fb ⁻¹ (2011) [ATLAS-CONF-2011-098] 720 GeV g m	ass (for $m(b) < 600 \text{ GeV}$)	dt = (0.031 - 1.00) lb
	\succ Simpl. mod. ($\tilde{g} \rightarrow tt \chi_1$) : 1-lep + b-jets + j's + $E_{T,miss}$	L=1.03 fb ⁻¹ (2011) [Preliminary] 540 GeV g mass	or $m(\chi_1) < 80 \text{ GeV}$	<mark>√</mark> s = 7 TeV
CIICV	\circ Pheno-MSSM (light χ) : 2-lep SS + $E_{T,miss}$	L=35 pb ⁻¹ (2010) [arXiv:1103.6214] 690 GeV Q [f]	SS	
0001	Simpl mod $(\vec{a} > c\vec{a}^{\pm})$: 1 lop $(\vec{a} > c\vec{a}^{\pm})$	$L=35 \text{ pb}^{-1}(2010) [arXiv:1103.6208] \qquad 558 \text{ GeV} Q \text{ IIIaSS}$	$PoV_{n}(m(\widetilde{x}^{\pm}) - m(\widetilde{x}^{0})) / (m(\widetilde{\alpha}) - m(\widetilde{x}^{0})) > 1$	1/2)
	GMSB (GGM) + Simpl. model : $\gamma\gamma + E_{T,miss}$	L=1.07 fb ⁻¹ (2011) [Preliminary] 200 GeV X Inc.35 (101 m/g) < 000 g	ass (for $m(bino) > 50 \text{ GeV}$)	172)
	GMSB : stable ~	L=37 pb ⁻¹ (2010) [arXiv:1106.44395 GeV $\tilde{\tau}$ mass		
	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] $\sim 562 \text{GeV} \widetilde{\text{g}} \text{mass}$		
	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 294 GeV b mass		
	Stable massive particles : R-hadrons	L=34 pb ⁻¹ (2010) [arXiv:1103.1984] 309 GeV t mass		
	Hypercolour scalar gluons : 4 jets, $m_{ij} \approx m_{kl}$	<u>L=34 pb⁻¹ (2010) [Preliminary]</u> 185 GeV Sgluon mass (excl: $m_{sg} < \tilde{c}$	00 GeV, <i>m</i> _{sg} ≈ 140 ± 3 GeV)	
	RPV (λ_{311} =0.01, λ_{312} =0.01) : nign-mass eμ	L=0.87 fb ⁻¹ (2011) [Preliminary] 440 GeV v_{τ} Mass		
	Large ED (ADD) : monojet	L=1.00 fb ⁻¹ (2011) [ATLAS-CONF-2011-096]	3.2 TeV $M_D (0=2)$	
	PS with k/M = 0.1 : diphoton m	L=1.07 fb ⁺ (2011) [Preliminary] 1.22	V Compact. scale 1/R	
	BS with $k/M = 0.1$: dilepton m	L=36 pD ⁻ (2010) [ATLAS-CONF-2011-044] 920 GeV	Graviton mass	
	RS with $g / g = -0.20$: $H_T + E_T$ mise	L=1.00°1.2110 (2011) [alxiv.1100.1302]	A aluon mass	
	Quantum black hole (QBH) : $m_{\text{max}}, F(\chi)$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864]	3.67 TeV M _D (δ=6)	
	QBH : High-mass $\sigma_{\rm ext}$	L=33 pb ⁻¹ (2010) [ATLAS-CONF-2011-070]	2.35 TeV M	
	ADD BH $(M_{th}/M_D=3)$: multijet $\Sigma p_{-}, N_{iets}^{i+\lambda}$	L=35 pb ⁻¹ (2010) [ATLAS-CONF-2011-068] 1.	7 TeV $M_{\rm D}$ (δ =6)	
	ADD BH $(M_{th}/M_{D}=3)$: SS dimuon N_{ch} part	L=31 pb ⁻¹ (2010) [ATLAS-CONF-2011-065] 1.20	$M_D(\delta=6)$	
	qqqq contact interaction : $F_{\chi}(m_{\text{dijet}})$	L=36 pb ⁻¹ (2010) [arXiv:1103.3864 (Bayesian limit)]	6.7 TeV Λ	
X A / X /	\vec{Q} qq $\mu\mu$ contact interaction : \vec{m}	L=42 pb ⁻¹ (2010) [arXiv:1104.4398]	4.9 TeV Λ	
	SSM : m _{ee/µµ}	L=1.08-1.21 fb ⁻¹ (2011) [arXiv:1108.1582]	1.83 TeV Z' mass	
	SSM : m _{T,e/u}	L=1.04 fb ⁻¹ (2011) [arXiv:1108.1316]	2.15 TeV W' mass	
	Scalar LQ pairs (β =1) : kin. vars. in eejj, evjj	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 376 Gev 1 ^{or} gen. LQ ma	SS	
	Scalar LQ pairs (β =1) : kin. vars. in $\mu\mu jj$, $\mu\nu jj$	L=35 pb ⁻¹ (2010) [arXiv:1104.4481] 422 GeV 2 ⁻¹⁰ gen. LQ	nass	
	4" generation : coll. mass in $Q_{Q_4} \rightarrow WqWq$	L=37 pb ⁻¹ (2010) [ATLAS-CONF-2011-022] 270 GeV Q ₄ mass		
	4 generation : d d \rightarrow WtWt (2-lep SS)	L=34 pb ⁻¹ (2010) [arXiv:1108.0366] 290 GeV 0 ₄ [IIASS		
	$H_{\text{4th gen.}} \rightarrow \text{tt} + A_0 A_0 : 1 \text{-lep} + \text{Jets} + E_{T,\text{miss}}$	L=1.04 fb (2011) [Preliminary] 420 GeV 1 111dSS	$pass(m(M_{\rm e}) = 1 \text{ To}))$	
	Major. neutr. (LRSW, no mixing) : 2 lep + jets	L=34 pb (2010) [ATLAS-CONF-2011-115] 780 GeV IV	$W_{B} = 1 \text{ IeV}$	۷)
	0 H ^{±±} (DY prod BR(H ^{±±} \rightarrow µµ)=1) · m	L=34 pb (2010) [ATLAS-CONP-2011-115] 1.3	$R_{R} = 100 \text{ GeV}$	SV)
	Fxcited quarks m.	/-0.81 (b ⁻¹ /2011) [ATLAS-CONE-2011-095]	2 91 TeV 0 [*] mass	
	Axigluons : <i>m</i> _{dijet}	L=0.81 fb ⁻¹ (2011) [ATLAS-CONF-2011-095]	3.21 Tev Axigluon mass	
	Color octet scalar : m_{dijet}	L=0.81 fb ⁻¹ (2011) [ATLAS-CONF-2011-095]	1.91 Tev Scalar resonance mass	
	dibi			
		10 ⁻¹	10	0
				Mass scale (Te\/)
	*Only a selection of the available results leading to mass	limits shown		
			\sim	

次期エネルギー

フロンティア計画

2つのアプローチ 陽子 vs 電子

- ◆ エネルギー
 - ▶ 陽子
- シンクロトロン放射 $\Delta E \propto \frac{(E/m)^4}{R}$ ◆ 背景事象その他解析のしやすさ
 - ▶ 電子 (R→∞ … Linear Collider)
 - 高いS/N
 - No multiple interactions, no underlying events, no remnant
 3次元の運動量保存

••••

• •

2つのアプローチ 陽子 vs 電子

- ◆ エネルギー
 - ▶ 陽子
- シンクロトロン放射 $\Delta E \propto \frac{(E/m)^4}{R}$ ◆ 背景事象その他解析のしやすさ
 - ▶ 電子 (R→∞ … Linear Collider)
 - 高いS/N
 - No multiple interactions, no underlying events, no remnant
 3次元の運動量保存

高いS/Nなどを利用して精密測定

◆ レプトンコライダー

◆ レプトンコライダー

高いS/Nなどを利用して精密測定

SPPS

◆ レプトンコライダー

高いS/Nなどを利用して精密測定

SPPS →Tevatron

◆ レプトンコライダー

高いS/Nなどを利用して精密測定

SPPS →Tevatron

→LEP→LEPII

◆ レプトンコライダー

高いS/Nなどを利用して精密測定

SPPS \rightarrow Tevatron \rightarrow LHC \rightarrow HL-LHC

→LEP→LEPII

◆ レプトンコライダー

高いS/Nなどを利用して精密測定

SPPS \rightarrow Tevatron \rightarrow LHC \rightarrow HL-LHC

→LEP→LEPII →ILC

◆ レプトンコライダー

高いS/Nなどを利用して精密測定

SPPS \rightarrow Tevatron \rightarrow LHC \rightarrow HL-LHC

→LEP→LEPII →ILC

相補的な関係

LHC長期計画

New rough draft 10 year plan

まだ正式なものではない

HL-LHCの物理

◆ まずは, 探索でのエネルギーリーチの拡大

◆ 何かあれば精密測定

質量到達範囲の目安 (TeV)

Process	LHC	SLHC	DLHC	LC	CLIC
	14 TeV	14 TeV	28 TeV	0.8 TeV	5 TeV
	100 fb^{-1}	1000 fb^{-1}	100 fb^{-1}	500 fb^{-1}	1000 fb ⁻¹
Squarks (TeV)	2.5	3	4	0.4	2.5
$W_L W_L (\sigma)$	2	4	4.5	6	90
Z' (TeV)	5	6	8	8^{\perp}	30^{\perp}
Extra-dimens.	9	12	15	5–8.5⊥	$30-55^{\perp}$
scale (TeV)					
q* (TeV)	6.5	7.5	9.5	0.8	5
Compositeness	30	40	40	100	400
scale (TeV)					
TGC,	0.0014	0.0006	0.0008	0.0004	0.00008
λ_{γ} (95%CL)					

ILC はじめの一歩

- ◆ 最も重要なのは加速器のエネルギー
 - ▶ Higgs生成
 - ▶ Higgs自己結合

- Mhiggs + Mz
- 2 x Mhiggs + Mz
- ▶ 超対称性・ダークマター 2 x LSP
- Any pair production 2 x M

ILC Accelerator Baseline Parameter for Physics

The BASELINE:

 E_{cm} adjustable from 200 – 500 GeV

Luminosity $\int Ldt = 500 \ fb^{-1}$ in the first 4 years $(L \sim 2x10^{34} \text{ cm}^{-2} \text{s}^{-1})$

e⁻ beam polarization 80%

<u>Upgradable:</u> to ~ 1 TeV with 1 $ab^{-1}/3-4$ years

<u>Options :</u> - e^+ polarization >50% - GigaZ (high luminosity running at M₇ and 2M_W)

- γγ, eγ, e⁻e⁻ collisions

Choice of options depends on LHC+ILC results

[http://www.fnal.gov/directorate/icfa/para-Nov20-final.pdf, Heuer et al]

Jlabにおける標準的な内面処理を行ったRI社製9セル空洞(10台)の性能歩留まりのプロット。製造受け入れ性能>38MV/m 対して、歩留まりが90%であることを表している。材料の欠陥や製造時の欠陥がなければ、この歩留まりが得られると考えられる。

良い製造会社と良い表面処理を選ぶと、ILCの最終目標である製造受け入れ性能>35MV/mで90%の歩留まり(Yield)を既に達成している。

提言のReminder

◆ LHCにおいて1TeV位までにヒッグスなどの新粒子の存在が 確認された場合には、ILC による詳細研究が大きく期待さ れ、 新しい物理の解明に最適化した ILCの早期実現に尽 力 すべきである。特に軽い新粒子は比較的早期に発見される可 能性があり、その場合低い 衝突エネルギーでの研究が重要と なる。今からその様な場合に適した加速器の設計研究を 適宜 進めていく必要がある。 一方ILCのエネルギー範囲に新粒 子・新現象が全く期待できない場合には、LHCおよび その アップグレード(HL-LHC)によって間断なく新しい物理の探究 を続けると共に、必要とされるエネルギーに素早く到達可能 なレプトンコライダーを実現するための電子加速 技術などの 開発研究を日本として重点強化していく。

LHCの結果に沿ったシナリオ

9/10のタウンミーティンでの 議論を踏まえて提示

◆ 現在までのLHCの結果を受けて分類

- ▶ 単純化のために以下の3つ
 - 1) 軽いヒッグスあり, New Physicsあり
 - 2) 軽いヒッグスあり, New Physicsなし
 - 3) ヒッグスなし, New Physicsなし

1) Higgs ある / NP ある

- ロマンチックな時代の到来
 - ◆ Higgsの精密測定
 ▶ 結合定数,質量,スピン,CP,寿命
 ◆ 新現象の同定
 ▶ SUSY, Little Higgs, UED, etc.
 MSSMは軽いHiggsがお好み

テラスケール物理のパラダイム

1) Higgs ある / NP ある

- LHC:未知粒子のさらなる探索
- LHC+ILC: Higgsの精密測定, 新現象の同定

2) Higgs ある / NP ない

- ・階層性問題その他、色んな問題が未解決
- Higgsを調べ尽くす
 - * SM か New Physics か
 - ◆ New Physics への手がかりを探す

Higgs Factory

• ヒッグスの性質

 新物理が見えてないだけかもしれない
 ◆ 将来LHCで重い新粒子が見つかる可能性 ⇒ ILCではエネルギー拡張できるように

3) Higgs ない / NP ない

- GWS模型は間違ってる
 ◆ ヒッグスレス模型?
 - ♦ WW散乱の精査

- ヒッグスは生成されているが見えてない?

3) Higgs ない / NP ない

• LHCを続ける (energy ↑の可能性?)

HyperKEKBの可能性を考える

ILC

結論

◆素粒子物理学上の大きな謎にコライダー実験は 挑んでいる

- SuperKEKB計画での新現象探索
- ▶ LHCの結果が今後の方向を決める
- ✤ LHCの結果に基づくシナリオを提示
 - ▶ 何かあればILC

● ヒッグスだけのときヒッグスファクトリー ▶ 見つからない場合のstudyの必要性