高エネルギー物理学将来計画検討小委員会タウンミーティング J-PARCで展開する高エネルギー物理学の将来展望 2011年8月9日

J-PARC 加速器の現状と展望

高エネルギー加速器研究機構 加速器研究施設/J-PARCセンター

小関忠

資料の作成にご協力いただいた方々: 金正倫計、発知英明、原田寛之、佐藤洋一、五十嵐進、冨澤正人、大森千広、外山毅、栗本佳典

内容

- 1. 利用運転の現状
- 2. 震災復興後のスケジュール
- 3. RCS のパワー増強 一仕様値1MW達成以降一
- 4. MR のパワー増強 中期的計画 長期的計画
- 5. まとめ

利用運転の状況

- tune, painting parameters, pattern of sextupoles

Since December 2010, 200 kW beam delivered to the MLF.

MR beam power in 2010 JFY

Accelerator study in the autumn/winter run:

- high power operation with bunch by bunch feedback system
- shortening the MR cycle time 3.52 -> 3.2 s -> 3.04 s
- slow extraction tuning with spill feedback and dynamic bump system

Beam delivery to T2K experiment

Total delivered number of protons: 1.43x10²⁰ pot (K2K: 1.0 x10²⁰ pot/ 4 years)

The problem of 20 MHz TRF system:

Pressure rise in the horizontal excitor section due to the multipactoring.

For users operation with transverse RF, solenoid coils should be installed to reduce the discharge due to the multipactoring.

Installed solenoid coils on the rf excitor

2011.7.19-20 measured by A.Schnase, T.Toyama, K. Satou

震災復興後のスケジュール

J-PARC recovery schedule

- Beam test will start in December 2011.

- User program will be restarted with beam time of about 50 days. It will be provided to users until the end of March 2012.

リニアックの増強

- ビームエネルギー: RCSの入射エネルギーを上げて空間電荷効果による粒子数の制限を引上げる。 リニアックにACS(Annular Coupled Structure linac)を設置し、ビームエネルギーを181 MeV から 400 MeVに上げるとともに、RCSの入射エネルギーを400 MeVにするために各種入射用電磁石電源 を増強する。2008年度の補正予算でスタート。2013年夏に据え付けとコミッショニングを予定。
- 2. ビーム電流: RCSへの入射粒子数を増加させる。
 - フロントエンド部(IS+RFQ)を入れ替えることにより、ピーク電流を30 mAから50 mAに増強する。 2010年度最先端施設整備費でスタート。2013年夏に据え付けとコミッショニングを予定。

SX power upgrade plan (~2013)

Plan made before the earthquake			Plan made after the earthquake		
	User operation	Accelerator study		User operation	Accelerator study
2010.10-2011.6	5 kW	10 kW			
2011.7—9(shutdown)	SX collimators		2011.6-11(shutdown)	SX collimators	
2011.10-2012.6	10 kW	50 kW	2011.12-2012.6	3 – 5 kW	5 – 10 kW
2012.7-2013.1(shutdown)	Li 400 MeV/Ti c	hambers (ESS,SMS)	2012.7-2012.9(shutdown)	Ti chambers (SMS)	
2013.2-2013. 6	10 kW	50 kW	2012.10-2013. 6	10 kW	50 kW
2013. 7–9 (shutdown)	Li 50 mA		2013. 7–2014. 1 (shutdown)	Li 400MeV/50 mA,	Ti chambers (ESS)
2013. 10–2014. 6	50 kW	100 kW	2014. 2–2014. 6	50 kW	100 kW
2014.7 – 9(shutdown)			2014.7 – 9(shutdown)		
2014. 10-	100 kW		2014. 10-	100 kW	

2011.12-2012.6: Recovery of the operation in the autumn 2010.2012 summer: Installation of Ti chambers in the SMS section.2013 summer: Installation of ESS with Ti chambers.

For duty

- Upgrade of RQ power supply for higher output voltage
- Coil short / ripple cancellor
- increase emittance
- ramping speed control of horizontal tune
- Replace the main magnet power supplies with newly developed ones

(high rep. rate and low ripple)

RCSのパワー増強

- 仕様値1MW 達成以降-

300 kW operation of RCS

On Dec.10, 2009, 300 kW-1hours beam delivery from the RCS to the MLF was successfully demonstrated.

The laslett tune shift at the injection energy of 181 MeV for the 300 kW operation is equivalent to the value at the injection energy of 400 MeV for 1 MW operation, design goal of the RCS.

$$\Delta v = -\frac{r_p n_t}{2\pi\beta^2 \gamma^3 \varepsilon B_f}$$

 ~ -0.15 (B_f=0.4, ϵ =216 π mm mrad)

At present: 181 MeV 1.3E13 ppb →0.3 MW

Design goal: 400 MeV 15 mA Linac current 50 mA Linac current: 4.2E13 ppb $\rightarrow 1 \text{ MW}$

420 kW-equivalent beam operations with 1 shot/0.3 Hz have been also demonstrated in 2010.

RCS 1.3 MW 運転の可能性

Linac において ピーク電流65 mAの運転が可能かどうかは、今後詳しく検討する必要がある。

- ・ 入射エネルギー:600MeV
- ・ 出射エネルギー:3GeV
- ・ ハーモニック数:2
- 繰り返し:50Hz
- リング周長:348.33m
- ・ 粒子数:8 x10¹³ ppp(ピーク電流 50mA、パルス幅 0.5ms)
 リニアックの入射エネルギーが600MeVに上がれば、リニアックを増強してRCSへの 入射粒子数を増やす可能性も出てくる。
- 加速周波数:1.36~1.67 MHz
- ・ 最大出力パワー:2MW

磁場中におけるH-ビーム損失率

H-粒子が強磁場中を通過する際には、ローレンツストリッピングによりある割合で電子 が剥ぎ取られて失われる。

電磁石·電源:600 MeV入射

電磁石•電源:30/50 Hz運転

アップグレード時に再利用可能な装置

電磁石	偏向電	電磁石	四極電磁石		
繰り返し周波数	30Hz	50Hz	30Hz	50Hz	
電磁石	0	すべて交換	0	0	
配線	0	現在の2倍に増強	0	現在の2倍に増強	
チョークトランス	0	すべて交換	0	すべて交換	
共振コンデンサ	0	すべて交換	0	ー部再利用の上増強	
電源	DC電源のみ交換	すべて交換	0	0	

○:損失等を再評価する必要はあるが、おそらくそのまま使用できるだろう

アップグレードに対するコメント

- (1)RCSの初期設計の段階で,偏向電磁石の鉄心長が制限されたことから, 現在の偏向電磁石の設計は全く余裕がない。さらに当初設計よりも最大磁場の値が 5%upしているため,電源のマージンはほとんど食いつぶされている。
 - アップグレード時に最も問題になるのは偏向電磁石である。

(四極電磁石はわりと余裕がある)

- (2)既設の装置を再利用する場合,最も懸念されるのが偏向電磁石の絶縁である。
 - できるかぎりトラブルを減らすためには25Hz,400MeV入射相当の交流電圧で 運転するのが望ましい思う。
- (3)50Hz運転の場合は、発熱量が現在の倍近く増加するため冷却水設備の増強も必要となる。

高周波加速システム

- 入射エネルギー:600MeV
- 繰り返し:50Hz
- ・ 粒子数:1.66x10¹⁴ ppp(ピーク電流 100mA、パルス幅 0.5ms)
 リニアックを増強して粒子数を2倍にできたときを想定して検討
- 加速周波数:1.36~1.67 MHz

加速電圧:

主電磁石の磁場パターンが基本波の場合、1.66x10¹⁴ ppp /50 Hzの加速に必要な電圧は ~765 kV程度。現在の空洞(45kV/cavity)でまかなうには17台必要となり、5台程度の増設が必要となる。 現行、スペースが確保されている12台で運転するには64 kV/cavity の空洞が必要。

→ FT3L空洞を用いると達成出来る可能性あり。

主電磁石の磁場パターンに2倍高調波を重畳する場合、dB/dtが緩和され、最大電圧を下げることができる。12.5%程度の2倍高調波を加えると、最大加速電圧は670 kV程度となり、現行空洞では15台必要。12台で運転するには 56 kV/cavityの空洞が要る。

真空管増幅器:

ビーム負荷補償のために真空管増幅器が供給する電流値は現行の2倍となるが、現在の真空管増 幅器、および電源類はすべて仕様値(8.3x10¹³ ppp)を想定しているため、その能力はない。すべて 新規に製作する必要がある。ビーム電流が増えると空洞を駆動する電流値も増えるが、現在のトン ネル、電力系統、冷却系統で可能な規模の機器に抑えることは困難と思われる。

LLRF:

制御システムの再製作が必要となるが、実現は可能。

RCS 600 MeV入射/50Hz運転の可能性:まとめ

■ L3BTラインでのビームロス

450MeVは実現可能。それ以上のエネルギーでは、ローレンツストリッピングによるビー ムロスが問題になる。

■ 主電磁石·電源

30Hzの運転は現行で対応可能。 50Hzになると、四極電磁石電源以外ほとんど全て再製作が必要

□ 高周波加速システム

50Hz運転は、新規に開発中のFT3L空洞を用いることで、実現可能な範囲。 (粒子数を大幅に(例えば2倍)増やすには、電源や増幅器の作り替えが必要。)

LLRF、タイミング

LLRFの再製作は必要であるが、実現可能

中期的計画 -MR-

RCS 1 MW simulation with 400 MeV injection

実施済み、リングは2011,2012年夏に実施。

MRにおける大強度化の方針

実現可能なビームパワーはビームロス(3-50BT, MR)によって制限される。 MRのビームパワーを上げるには(エネルギーを固定すれば):

・RCSから受け取る粒子数を増やす

空間電荷効果によるロスの増加は非線形

・ビームエネルギーは30 GeV $(+\alpha)$ とする。

・ロスがコリメータの容量に対して十分に余裕がある領域(粒子数)で繰り返しを高く することによってビームパワーを上げる。(2009年8月J-PARC加速器コストレビュー)

現行電源で可能な繰り返し=2.4 sでのシナリオ

for MR435kW

0.25

by $\Phi 2$ optimizing

0.3

0,962

0.96

Smoothing

加速開始

0.15

0.2

Time (ms)

Tune=(22.43, 20.76)

2014年度以降:仕様値750 kW(FX)の達成

オリジナルプラン(J-PARC建設開始時)

750 kW @ 50 GeV : J-PARC第2期計画(必要経費 < 100億)

-> オリジナルプランと同程度、またはそれ以下の予算で、仕様値の早期達成を目指す。

基本方針:高繰り返し化

現行電源の改修で得られる繰り返しは、2.2-2.6 s が限界。主電磁石電源の交換によって、 1 s 繰り返しを目指す。

- 新電源(高繰り返し、低リプル、フリッカー対策)
- 高勾配加速空洞(磁性材料開発、小型化):増設と現行空洞の一部置き換え
- インフラ整備:電源棟の増設を含む

タスクフォースチームによるR&D が進行中。

R&D of new magnet power supply

- High rep rate (> 1 Hz),
- Energy recovery using condenser bank
- Small current deviation ..

A small scale prototype and a real scale prototype (for QFR) will be manufactured and tested in 2011/2012.

R&D of High field gradient RF cavity

- Adopt the higher impedance MA core (FT3L) to decrease power dissipation in the cavity
- 4-gap cavity by reducing the cavity length

For small size core (27 cm in diameter), impedance of the FT3L is ~ 2 times larger than the FT3M, the present core using J-PARC.

We have started to manufacture the real size core of FT3L for the MR in the J-PARC site (<u>HD hall</u>) using recycled magnet from the FM cyclotron of INS.

Manufacture of real size FT3L core for rf cavity

The MA core is treated inside a hightemperature large furnace, which is located inside the magnet gap.

~24 hours for the heat treatments

Diameter 80 cm, thickness 2.5 cm, and approximate weight 60 kg.

量産されたコアの高周波特性

繰り返し=1.2 sでのシナリオ

Future plans for SX (under discussion)

Feasibility study for low-loss SX

High β insertion
 β > several 100m @ESS
 Q-PS separated in SX-INS
 Add extra Qs in SX-INS
 Larger-bore Qs in SX-INS

- Scatterer+ESS scheme

- Low-Z ESS, scatterer carbon-nanotube carbon graphite Beryllium,Titanium,

長期的計画 - Fast extraction-

Multi-MW output beam power for neutrino experiment

1. Large aperture MR

Enlarging the physical aperture from 81 to 180 pi.mm.mrad -> A new synchrotron in the MR tunnel

2. Second booster ring for MR : Emittance damping ring New ring with extraction energy > 6 GeV, between the RCS and the MR

3. A new rapid cycling synchrotron using ~1 GeV linac beam

- as an injector of MR / as a proton driver for neutrino beam production
- 4. MR with barrier bucket system

.

MR入射エネルギーとビームロス

RCS 1MW 400 MeV Active Coll 210pi (BT60pi)のデータを用いて、エミッタンスを Emitt/(β*γ)にスケールしてMR待ち受けロスを計算

6 GeV and 8 GeV Injection in MR

入射から加速初期までのビームロス

RCS 1MW No Active Coll. 324pi, BT 62pi → MR1.33MW for Trep=1.2s

6~8 GeV のSBRがあれば、RCS から1MW 相当のビームを入射して1.33 MW出力が可能。 さらに、RCSから 1.3 MW相当のビームを入射して 1.73 MW 出力も視野に。

h=18 operation in MR

技術的課題:

・高速キッカー

または

・RCSの大強度単バンチ運転・50 Hz 運転

~1.7 MW ×2 = 3.4 MWI⊂。

RF Voltage for SBR

長期的計画 - Slow extraction-

遅い取り出しストレッチャー導入による最大のメリット

実験施設で重要なのは ビームパワー×運転時間

例えば

- MRは繰り返しを1.2秒(FX)にあげて800kW(30GeV)を達成するとする
 MR全体で年間200日運転とする
- ・ニュートリノは年間 800kW x 150日のビーム量をほしいとする
- ・SXは繰り返し4.8秒とする(フラットトップ3.6秒)
- ・ストレッチャーの周長はMRと同じ

◎FXとSXを時間シェアーする現在の運転方式での年間ビーム供給量

・ニュートリノは800kW x 150日

・HDは800kW x 1.2/4.8 x 50日=200kW x 50日

この例では、 NUへのビーム量はそのままで、HDへのビーム量を4倍にできる

遅い取り出しストレッチャーその他のメリット

◎ストレッチャーは加速時間がいらないので、 effective spill dutyを上げられる

◎主電源はDCなので低リップルにすることが容易。 スピル性能が向上する

FNAL Main Injector Tunnel150 GeV Main Injector8 GeV Recycler Ring

入射エネルギーのリング 遅い取り出し無し もともとから設計されている ->

磁石はコンパクト->永久磁石 ring-ring beam transfer 可能 J-PARC Main Ring Tunnel 30/50 GeV Main Ring synchrotron 30/50 GeV stretcher

出射エネルギー+遅い取り出しリング ->

ストレッチャー磁石は大きい ring-ring beam transfer が難しい ユーティリティーの問題 メンテナンスが困難 長期シャットダウンが必要

半分の周長のストレッチャー(ビーム強度は約半分) から出発し段階的に拡張することも考えられる

まとめ

加速器の進捗状況

RCS: 220 kW利用運転(MLF)

MR: 145 kW利用運転(NU)

3.6 kW利用運転(HD),取り出し効率99.5 %、Duty 17 %

震災復興後:

2011年12月にビーム運転開始。年度内に約50日の利用運転。 短期的計画:

2013年度末までに、

Linac: 50mA/400 MeV RCS: MLFでビームパワー400 kWの利用運転を目指す。 MR: NUで300 kW、HDで50 kWの利用運転を目指す。

2014年度以降

RCS: 1 MW利用運転(MLF)、及びさらなる大強度化を目指す。 MR: 750 kW(NU)の利用運転、100 kW(HD)の利用運転、 及びさらなる大強度化を目指す。

まとめ(続き)

長期的計画

Linac

600 MeV/50 Hz 運転(with SC linac)

RCS

600 MeV 入射/50 Hz 運転の可能性を検討中。

MR

FX: マルチMWのスキームの議論を開始。

SBR (6-8 GeV)を用いた、1.7 MW/3.4 MW出力の可能性を検討中。

SX: 現行システムによる性能向上、ロスの低減を目指すR&Dが最優先だが、将 来の可能性としてストレッチャー案を提示。