

Muon & Tau Physics

Toru lijima *Nagoya University* June 25, 2011 HEC sub-committee for future planning

Opening Remark

 Many people say LHC will find NP, and our future plan depends on results there.

It is not all !

• There may be new findings in the charged lepton sector ! (maybe already...)

3.4 σ deviation in muon g-2

MEG ($\mu \rightarrow e \gamma$) is in progress and may find...

Contents

Special thanks to: Mihara-san, Saito-san, Mori-san

- Muon LFV
 - μ**→**eγ
 - MEG (+upgrade)
 - − μ → e conversion
 - DeeMe
 - COMET
 - More...
- Muon g-2/EDM
- Tau Physics @ Belle II

Quest on Lepton Flavor Physics

- Quarks have flavor mixing & CPV.
- Neutrinos have flavor mixing
- → CPV?
- What about charged leptons ?

Discovered already and getting matured (the final angle θ_{13} being measured...)

Not discovered yet !

Very interesting to know how the charged lepton mixing matrix looks like !

Kuno-san

Routes to Slepton Mass Matrix

• In case of SUSY, LFV processes are induced by off-diagonal elements of the slepton mass matrix.

Sensitive to the SUSY breaking mechanism

Sensitivity to New Physics

- Good chance to see the signal.
- Sensitivity exceeds the limit at LHC.

Rating of DNA of New Physics

W. Altmannshofer, A. J. Buras, S. Gori, P. Paradisi, D. M. Straub, Nucl. Phys. B830, 17-94, 2010.

	AC	RVV2	AKM	δLL	FBMSSM	LHT	RS
$D^0 - \overline{D}^0$	***	*	*	*	*	***	?
ϵ_K	*	***	***	*	*	**	***
$S_{\psi\phi}$	***	***	***	*	*	***	***
$S_{\phi K_S}$	***	**	*	***	***	*	?
$A_{\rm CP} \left(B \to X_s \gamma \right)$	*	*	*	***	***	*	?
$A_{7,8}(B \to K^* \mu^+ \mu^-)$	*	*	*	***	***	**	?
$A_9(B \to K^* \mu^+ \mu^-)$	*	*	*	*	*	*	?
$B o K^{(*)} \nu \bar{\nu}$	*	*	*	*	*	*	*
$B_s \rightarrow \mu^+ \mu^-$	***	***	***	***	***	*	*
$K^+ \to \pi^+ \nu \bar{\nu}$	*	*	*	*	*	***	***
$K_L \to \pi^0 \nu \bar{\nu}$	*	*	*	*	*	***	***
$\mu \rightarrow e\gamma$	***	***	***	***	***	***	***
$\tau \to \mu \gamma$	***	***	*	***	***	***	***
$\mu + N \rightarrow e + N$	***	***	***	***	***	***	***
d_n	***	***	***	**	***	*	***
d_e	***	***	**	*	***	*	***
$(g-2)_{\mu}$	***	***	**	***	***	*	?

Table 8: "DNA" of flavour physics effects for the most interesting observables in a selection of SUSY and non-SUSY models $\bigstar \bigstar \bigstar$ signals large effects, $\bigstar \bigstar$ visible but small effects and \bigstar implies that the given model does not predict sizable effects in that observable.

$\mu \rightarrow e \gamma$: Signal & Background

Background Signal Correlated **Accidental** 180° e+ Michel decay + radiative µ decay γ from other processes $E_{\gamma} = E_e = \frac{m_{\mu}}{2} = 52.8 \,\mathrm{MeV}$ $B_{acc} \propto \delta E_{e} \cdot \delta t_{e\gamma} \cdot (\delta E_{\gamma})^{2} \cdot (\delta \theta_{e\gamma})^{2}$ $\Delta t_{e\gamma} = 0$ $\theta_{e\gamma} = \phi_{e\gamma} = 180^{\circ}$

Accidentals are dominant background at O(10⁻¹³) sensitivity

MEG Experiment at PSI

- High rate μ^+ beam: 3×10^7 /s on a thin stopping target.
- e⁺ detection
 - Gradient B-field to sweep μ⁺ quickly and keep bending radius constant.
 - Low mass drift chamber to measure ($E_{e'}$, θ_{e}).
 - Timing counter for precision timing.
- γ detection
 - liquid Xe detector to measure $(E_{\gamma}, \theta_{\gamma}, t_{\gamma})$
 - Fast response, high light yield.

MEG 2009 Result (preliminary)

- BR(μ→eγ) < 1.5×10⁻¹¹ (90% C.L.)
- Sensitivity at 6.1×10⁻¹² (average 90%C.L. UL from null signal toy MC)

```
c.f.) The best UL (MEGA): BR(μ→eg)<1.2×10-11 (90% C.L.)
PRD65,112002 (2002)
```


Solid/dashed/dotted lines correspond to $1/1.64/2 \sigma$ regions.

MEG Prospect

- Coming soon:
 - 2009+2010 result in summer
 (2010 run x ~2 stat. w/ some detecter
 improvement)
 - 2011 run is starting
- Possible improvements for the next few years:
 - Improved DAQ & trig. Eff.
 - Improved e⁺ detection eff.
 - Better e⁺ reconstruction:
 - Reduced noise
 - Z-measuring fiber counters
 - Calibration with monochromatic positron beam (Mott scattering)
 - Better dE_γ with precise calibration and better reconstruction algorithms
 - Improvement of magnetic field map
 - Beam intensity optimization

Possible Improvements for Future Upgrade

Future upgrade for x10 better sensitivity

- Detector upgrade
 - LXe g-Detector
 - New photon sensor w/ higher QE
 - Finer granularity w/ smaller sensor
 - Positron spectrometer
 - Reduction of material
 - Increase acceptance
 - Improve resolution and background
- Polarized μ^+ beam \rightarrow Angular distribution measurement
 - Testing different SUSY-GUT models
 - Reduce background

$$B_{acc} \propto \delta E_{\rm e} \cdot \delta t_{e\gamma} \cdot (\delta E_{\gamma})^2 \cdot (\delta \theta_{\rm e\gamma})^2$$

Improveme	ent
LXe detector	
Higher QE PMT + coverage	δ <i>E</i> _γ x 0.65, δ <i>t_{eγ}</i> x 0.77
Finer granularity with smaller PMT	δ <i>θ_{eγ}</i> x 0.72, <i>B_{acc}</i> x 0.6
Drift chamber	
Reduce material	δ <i>E</i> e x 0.8
General	
Double acceptance	<i>B_{acc}</i> x 0.5

μ-e Conversion: Sensitivity to NP

Relation to g-2 (Δa_{μ})

$\mu \rightarrow e \gamma$ and $\mu \rightarrow e$ conversion

- If $\mu \rightarrow e\gamma$ exits, μ -e conv must be (except rare case of cancellation)
- Even if $\mu \rightarrow e\gamma$ is not observed, μ -e conv may be
- Loop vs Tree
 - Searches at LHC
 - Important to measure both $\mu \rightarrow e\gamma$ and μ -e conv with similar sensitivities

COMET

Layout of COMET

Single event sensitivity $B(\mu^- + Al \to e^- + Al) \sim \frac{1}{N_\mu \cdot f_{cap} \cdot A_e},$

Single event sensitivity 2.6 x 10⁻¹⁷

Requirements for the Beam

- Backgrounds
 - Beam Pion Capture
 - $\pi^-+(A,Z) \rightarrow (A,Z-1)^* \rightarrow \gamma + (A,Z-1)$ $\gamma \rightarrow e^+ e^-$
 - Prompt timing \rightarrow good Extinction!
 - μ^{-} decay-in-flight, e⁻ scattering, neutron streaming
- Requirements from the experiment
 - Pulsed
 - High purity

Mu2e @ FNAL

- The mu2e Experiment at Fermilab.
 - Proposal has been submitted.
 - Received CD-0 in Nov. 2009
 - In a process to obtain CD-1
 - Anticipated DAQ start in 2017
 - After the Tevatron shut-down
 - uses the antiproton accumulator ring
 - the debuncher ring to manipulate proton beam bunches
- Compatible target sensitivity to COMET

Accumulator (8 GeV) Debuncher (8 GeV) Linac Booster Switchyard 8 GeV Inj A0 Main Injector Tev Extraction 150 GeV Collider Aborts Target Recycler 8 GeV B0 Detector p Abort and Low Beta

Fermilab Accelerators

DeeMe

- It may be worth to search for μ-e conv. with a sensitivity around 10⁻¹⁴ because
 Br(μ→eγ)/Br(μ-e)~α
- DeeMe at J-PARC aims at 10⁻¹⁴ sensitivity for μ-e conv. using
 - MLF pulsed proton beam
 - Beam line as a spectrometer
- Proposal submitted both to
 - IPNS PAC
 - Physics merit and experiment feasibility under discussion
 - MUSE PAC
 - Approved

General Idea of μ -e conv. exp.

DeeMe at MLF

- Beam line as an electron spectrometer
 - Kicker magnets to sweep prompt background
 - Conventional spectrometer to measure electron momentum
- S.E.S. 1.5×10⁻¹⁴ for 2×10⁷ sec DAQ

Aiming for a 10^{-18} search with an extreme high intensity $(10^{11} \div 10^{12} \mu/s)$ beam with μ storage ring.

Fixed-field alternating gradient synchrotron perform conversion from original short-pulse beam with high momentum spread (30%) into a long pulse beam with narrow momentum spread (3%).

 μ beam production studies at MUSIC@RCNP in progress.

Muon g-2 / EDM

 $\boldsymbol{\Omega}$

 Magnetic and Electric Dipole Moments are related to Spin of the Particle: axial vector

$$\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{s} \quad \vec{d} = \eta\left(\frac{e}{2mc}\right)\vec{s}$$
$$= \frac{g-2}{2} \quad H = -\vec{\mu} \cdot \vec{B} - \vec{d} \cdot \vec{E}$$

MDM (Magnetic Dipole Moment) Contains contributions from ALL PHYSICS! - EW, QCD, and New Physics \Rightarrow precision test of the SM \Rightarrow the most precise determination of α_{EM} from electron g-2 (0.37 ppb) EDM (Electric Dipole Moment)
If EDM nonzero, T is violated
⇒ CP violation in the lepton sector (under CPT)
⇒ leptogenesis?
⇒ Baryon Asymmetry in the Universe

SM Contribution to $a \neq 0$

 Any particle which couples to muon/photon would contribute : QED >> Hadron > Weak

"Final Report" from BNL E821

$$\Delta a_{\mu}^{(\text{today})} = a_{\mu}^{(\text{Exp})} - a_{\mu}^{(\text{SM})} = (295 \pm 88) \times 10^{-11}$$

- E821 at BNL-AGS measured down to
 0.7 ppm for both μ+ and μ-
- 3.4 sigma deviation from the SM
 - SM prediction OK?
 - New Physics?
- Need to explore further
- Preferably
 NEW METHOD!

Muon Spin precession

$$\vec{\omega} = -\frac{e}{m} \left[a_{\mu} \vec{B} - \frac{1}{\gamma^2 - 1} \right] + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) + \frac{\eta}{2} \left(\vec{\beta} \times \vec{B} \right) \right]$$

$$\eta: d_{\mu} = \frac{\eta}{2} \left(\frac{e}{2m} \right) \text{ Electric Dipole Moment}$$

$$d_{e} = (6.9 \pm 7.4) \times 10^{-28} e \cdot \text{cm}$$
Expected to be
$$d_{\mu} < (1.5 \pm 1.4) \times 10^{-25} e \cdot \text{cm}$$
Measured to be
$$d_{\mu} = (0.0 \pm 0.9) \times 10^{-19} e \cdot \text{cm}$$
G.W.Benett et al. Phys.Rev.D80:052008,2009
$$\vec{\gamma}_{\text{magic}} = 29.3$$

$$\vec{\rho}_{\text{magic}} = 3.09 \text{ GeV/c}$$

$$\vec{\omega}_{a} = -\frac{e}{m} a_{\mu} \vec{B}$$

Off Magic Momentum?

- Tertiary Muon Beam
 - Widely spread over phase space
 - Contamination of pion

Electric Field for Focusing ⇒ Magic Momentum

	BNL-E821	Fermilab	J-PARC	
Muon momentum	3.09 (GeV/c	0.3 GeV/c	
gamma	29).3	3	
Storage field	B=1.	.45 T	3.0 T	
Focusing field	Electric quad		None	
# of detected m+ decays	5.0E9	1.8E11	1.5E12	
# of detected m- decays	3.6E9	-	-	
Precision (stat)	0.46 ppm	0.1 ppm	0.1 ppm	

Tau Physics at SuperKEKB

Super B factory $\sigma(e^+e^- \rightarrow B\overline{B}) \approx 1.1 \text{ nb}$ is also a Super Tau Factory $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \approx 0.91 \text{ nb}$

Physics with O(10¹⁰) τ / year

SUSY-GUT

• SU(5)+ v_R , non-degenerate $v_R(I)$, normal Hierarchy

If MEG find $\mu \rightarrow e\gamma$ at ~10^{-12 \rightarrow 13}, good chance to see also $\tau \rightarrow \mu\gamma$ at 10^{-8 \rightarrow -10 Even if MEG does not, still important to search for $\tau \rightarrow \mu\gamma$.}

NP signature in $\tau \rightarrow \ell \gamma, \ell \ell \ell$

• The two decays have different sensitivity for different NP models. γ

	Reference	τ◊μγ	τ◊μμμ
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

Searches in various LFV modes help to discriminate NP models.

The present B-factories reach the sensitivity of O(10⁻⁸)

$\tau \rightarrow \mu \gamma, e \gamma$

- Background: $\tau \rightarrow \mu \nu \nu / e \nu \nu + ISR$ (or beam background)
- Small amount of $\mu\mu$ events in $\Delta E>0$

Future prospects

- Super B-factory: $L_{int} = 10 \rightarrow 50 ab^{-1}$ $N_{\tau} = (1 \rightarrow 5) \times 10^{10}$
- Recent improvement in the analysis
 - BG understanding
 - Intelligent selection
- At 50 ab⁻¹

 $Br(\tau \rightarrow \mu \gamma) < O(10^{-9})$ $Br(\tau \rightarrow ||| < O(10^{-10})$

● τ→μγ **∎** τ**→**μη **▲** τ → ||| CLEQ

Background in $\tau \rightarrow \mu \gamma$ analysis

If we can remove BG events caused by ISR completely...

In order to improve:

- Better γ resolution
- Optimization of accelerator energies & asymmetry.

Summary

- Muon and Tau physics:
 - Good probe for high energy scale (beyond LHC)
 - No SM background, No hadronic uncertainty
- Muon g-2: 3.4 σ deviation now. \rightarrow Important to test w/ the new experiment

Peformance prospect for next few years

	2008	2009 (preliminary)	2010 (preliminary)	2011 (preliminary)	2012 (preliminary)
Gamma Energy (%) Gamma Timing (psec) Gamma Position (mm) Gamma Efficiency (%) e+ Timing (psec) e+ Momentum (%) e+ Angle (mrad) e+ Efficiency (%) e+-gamma timing (psec) Muon Decay Point (mm) Trigger efficiency (%)	2.0(w>2cm) 80 5(u,v)/6(w) 63 <125 1.6 10(φ)/18(θ) 14 148 3.2(Y)/4.5(Z) 66	 ← >67 ← 58 ← 0.61 (core) 6.2(Φ)/9.4(θ) 40 151 (core) 3.3(Y)/3.3(Z) 91 	1.5-2.0(w>2cm) ← ← 60 ← ← ← ← 120-130 ← 92	1.2-2.0(w>2cm) ← ← ← 0.55-0.61(core) 6.2(Φ)/(7-9.4)(θ) ← 100-130 2.8-3.3(Y)/3.0-3.3(Z) 92-98	 ↓ ↓
Stopping Muon Rate (sec ⁻¹) DAQ time/ Real time (days)	3×10 ⁷ 48/78	2.9×10 ⁷ 35/43	2.9×10 ⁷ 56/67	← 135/161	← ←

COMET Curved Solenoid Spectrometer

- Select electron momentum with large acceptance
 - Same technique in muon transport
- Torus drift for rejecting low energy DIO electrons. $D[m] = \frac{1}{0.3 \times B[T]} \times \frac{s}{R} \times \frac{p_l^2 + \frac{1}{2}p_t^2}{p_l}$
 - rejection $\sim 10^{-6}$: < 10kHz
- Good acceptance for signal electrons (w/o including event selection and trigger acceptance)

- 20%

COMET: Background Estimation Summary

Background	Events	Comments
Radiative Pion Capture	0.05	
Beam Electrons	<0.1	MC stat limited
Muon Decay in Flight	<0.0002	
Pion Decay in Flight	< 0.0001	
Neutron Induced	0.024	For high E n
Delayed-Pion Radiative Capture	0.002	
Anti-proton Induced	0.007	For 8 GeV p
Muon Decay in Orbit	0.15	
Radiative Muon Capture	<0.001	
Muon Capture with n Emission	<0.001	
Muon Capture with Charged Part. Emission	<0.001	
Cosmic-Ray Muons	0.002	
Electrons from Cosmic-Ray Muons	0.002	
Total	0.34	

Muon g-2 in the LHC era

 Even the first SUSY discovery was made at LHC, the muon g-2 measurement remains unique to determine SUSY parameters: μ and tan β

g-2, EDM and cLFV

• Large g-2 \rightarrow Large cLFV \rightarrow Large EDM

- G. Isidori, F. Mescia, P. Paradisi, and D. Temes, PRD 75 (2007) 115019
- J. Hisano, Nagai, Paradisi

Origin of EDM M Pospelov and A Ritz Ann Phys. 318 (2005) 119

Measured in g-2 experiment

• "Inclusive" precession frequency

LINAC

3 GeV

Synchrotron

Magn

414-1

Ultra-Cold

Muon Source

Muor

400 400

Muon LINAC

*Neutrino Beam To Kamioka

Muon magnetic moment

- Magnetic moment and spin can be related as
 - $\vec{\mu} = g\left(\frac{e}{2m}\right)\vec{s}$ $\vec{\mu}$: magnetic moment \vec{s} : spin g: gyromagnetic ratio
- Dirac equation predicts g=2

$$\mu = (1+a) \left(\frac{e\hbar}{2m}\right) \qquad a = \frac{g-2}{2}$$

a=0

a≠0

 Radiative corrections (including NEW PHYSICS) would make g≠2

$$\left(\frac{m_{\mu}}{m_{e}}\right)^{2} \sim 40,000 \qquad \left(\frac{m_{\tau}}{m_{\mu}}\right)^{2} \sim 290$$

Magic vs "New Magic"

• Complimentary!

Fermilab (g-2) Experiment: E989 Goal ± 0.14 ppm (BNL E821 ÷ 4) Approval and funding Stage 1 approval: January 2011 First Funding from DOE: June 2011 Funding profile for FY2012 and later being determined Uses: the existing storage ring relocated to Fermilab 8 GeV booster to provide proton batches that are rebunched in the Recycler ring p-bar Debuncher ring is a 900m pion decay line Permits X 21 the statistics of BNL E821

Polarized muons delivered and stored in the ring at the magic momentum, 3.094 GeV/c

Fermilab (g-2) Experiment: E989 Goal ± 0.14 ppm (BNL E821 ÷ 4) Total project cost ~\$42M CD0 expected this fall Conceptual Design Report being prepared FY2011 Funding began this June FY2012 and beyond is being discussed between **DOE and Fermilab**

Technically driven schedule:

