

超低エミッタンスビームの生成と制御

栗木雅夫 広島大学/KEK

Contents

- ► Introduction : ATF/ATF2 and ILC
- ► ATF achievement
- ► ATF2 latest status
- ► Issues not covered by ATF/ATF2
- **►** Summary

Introduction

ATF/ATF2 and ILC

- To achieve the enough luminosity in LC
 - ► Generate extremely low-emittance (polarized) beam
 - Accelerate it without any beam quality degradation.
 - ► Focus down to adequate beam size and precise control the collision
- ATF/ATF2 is a test facility to demonstrate the key technologies for LC
 - Extremely low-emittance beam (ATF)
 - ► Focus system (ATF2)
 - Precise beam control and diagnostic techniques (ATF/ATF2)

Milestone

	Conventional	FFTB	ATF/ATF2 Design	ATF/ATF2 Achieved	ILC	unit
$\gamma \epsilon_{\scriptscriptstyle y}$	>10	2.0	0.03	0.03	0.04	μm
BPM resolution	>1000	<1000	2	9	2	nm
Beam size	>1000	70	34	?	5	nm
Position jitter	>100	10>?	2	?	2	nm

- Normalized emittance ($\gamma \epsilon_y$) is already achieved.
- ▶ BPM resolution is close to the target.
- Beam size and position jitter at IP should be demonstrated in ATF2.
- ► ATF2 can prove the reliable collision in ILC except the geometrical beam size, which is just scale as the beam energy.

ATF/ATF2 layout

F Photo-cathode RF gun (electron source)

S-band Linac ∆f ECS for multi-bunch beam

ATF achievements

ATF

- Generate the extremely low emittance beam
 - Generate the electron bunches with a moderate emittance and required bunch intensity.
 - Inject the beam into DR and stored it.
 - During the storage, the beam emittance is damped by iterative process of synchrotron radiation and re-acceleration (radiation damping).
- Provide the damped beam to ATF2 stably and reliably.

	ATF	ILC	Unit
Bunch Intensity	1 – 4.8	3.2	nC
# of bunches	1-60	2625	
Bunch spacing	2.8	6.15 (369)	ns
Beam energy (DR)	1.3	5	GeV
ү Ех	4.3-5.1	10	mm.mrad
ү Еу	0.03	0.04	mm.mrad

ATF International Collaboration

XSR beam-size monitor . . . (東大物性研, KEK) . .

X-Ray Telescope using Zone Plate at 3.2KeV magnification: 20

- Non destructive measurement
- High resolution (< 1mm)</p>
- 2D direct imaging of the electron beam
- Real time monitoring (< 1ms)

Zone plate

SR X-ray beam line

Emittance

- ► The target emittance is achieved in 2001.
- ► However, the emittance is not always reproduced even with careful tunings. The reproducibility has been an issue.

Emittance Reproducibility

Emittance situation is similar to that in May 09. Measured ε_y =8.56±0.46/ 8.43±1.79/ 3.50±1.78/ 2.00±1.61pm by XSR/ IF/ LW00/ LW01. Study for the discrepancy is still on going.

高エネルギー物理学 将来計画検討小委員会

Fast Kicker R&D

- ► In ILC, 2625 bunches are stored in 6.4km DR with compressed spacing.
- Compress/de-compress injection/extraction are performed by fast-kicker.
- ► The kicker rise/fall time should be less than the bunch spacing in DR (3.1-6.2ns) for the bunchby-bunch manipulation.
- In ATF, a fast kicker system is developed to provide the beam in ILClike format to ATF2.

Multi-bunch beam extraction

- Stored beam in DR with 5.6ns bunch spacing is extracted by the fast kicker system to ATF2 beam line in 308ns spacing.
- Up to 17 bunches are extracted, but the intensity in-flatness and orbit fluctuation are observed.
- Improving the reliability and stability of the system, especially the fast power supply, is issue.

Stripline electrode

ATF2 latest status

ATF2

- ► ATF2 demonstrates feasibility of the local chromaticity correction scheme.
- This small beam size has to be maintained with adequate reproducibility and stability.
- Required technical aspects should be developed in the effort.
- ightharpoonup ATF2 is in tight conditions more than that in ILC (smaller $β_{x,y}$ and equivalent position jitter). The performance can be extrapolated to ILC regime without critical risks.

	ATF2	ILC	Unit
Beam energy	1.3	250	GeV
γεχ	4.3-5.1	10	mm.mrad
γεγ	0.03	0.04	mm.mrad
σχ	2.3	0.64	μm
σy	34	5.7	nm
βx	4	20	mm
βy	0.1	0.4	mm
Y position jitter	2.0	2.0	nm

Local Chromaticity Correction

- Chromatic aberration and dispersion have to be compensated to obtain the small spot size at IP.
- ILC employ local chromaticity correction.
 - ► Total length could be compact.
 - ► Compensate the chromaticity induced by the final doublet effectively with the sextupoles (~10⁴).
 - Suppress the dispersion induced by the sextupoles simultaneously.

Dispersion
$$X = X_{\beta} + \eta \delta$$
 non-local SF2 SF1 SD1 SD0 QF QD $\frac{\Delta \sigma_{x,y}}{\sigma_{x,y}} = W_{x,y} \delta$ local $\delta = \frac{\Delta E}{E}$ local $\delta = \frac{\Delta E}{E}$

ATF2 Optics

高エネルギー物理学 将来計画検討小委員会

ATF2 and **FFTB**

- ► Final focus system of NLC/GLC (conventional separated function) has been demonstrated in FFTB at SLAC (1994).
- Aim of ATF2 is
 - ► Prove the new optics with a high-stability and reproducibility.
 - ► Establish the tuning method and required beam control and diagnostic system; ILC exercise.

	ATF2	FFTB	Unit	
Beam energy	1.3	47.0	GeV	
	Local non-	Non-local		
Optics	linear	linear		
γε _y	0.03	2.0	mm.mrad	
βy	0.1	0.1	mm	
σy (design)	34.0	52.0	nm	
σy (achieved)	?	70	nm	
Stability	2	>10?	nm	

Installation in ATF2

高エネルギー物理学 将来計画検討小委員会

ATF2 strategy

- ► Mode I: establish 34nm beam size (~2010)
 - **▶** Demonstrate feasibility of the new optics.
 - Maintain the small beam size with an enough long period.
- ► Mode II: stabilize the beam orbit (~2012)
 - ► Prove the several nm level orbit stability at the virtual IP.
 - ► Develop the precise beam control to realize the same stability in multi-bunch ILC format beam.

IP-Beam Size Monitor

Fig. 33. The estimated beam size resolution. For the 25 - 6000 nm beam size, target resolution 10% can be achieved using 2° , 8° , 30° and 174° crossing angle modes.

- Beam size at virtual IP is measured by scanning the laser-interference pattern with the e-beam.
- By changing crossing angle of two lasers, a wide range of resolution is covered.
- First interference pattern is observed by the beam in 2009/11.

First observation of the fringe pattern signal

IP Cavity BPM

IP CBPM resolution

Residual of (Y2I - Y2I_{predicted})

Time (event number, 1.5Hz)

測定条件:ビーム強度=0.7x10¹⁰/bunch, dynamic range = 5 μ m

分解能(1時間測定) = 8.7±0.3(統計)±0.4(系統) nm

2nm目標: 1x1010/bunch, 温度安定化,シグナル増, active support ..

Issues not covered by ATF

ILC and Super-B

- ► The latest design of Super-B factories based on nanobeam storage ring is close enough to ILC DR.
- Many issues are commonly able to be studied for ILC and Super-B.

	ILC-DR	KEK SB	Italian SB	Unit
Beam energy	5	4.0 / 7.0	4.1 / 6.8	GeV
С	6.40	3.00	1.30	km
γε _γ	0.02	0.10	0.05	mm.mrad
βy	-	0.27 / 0.42	0.10	mm
	0.4	3.6 / 2.6	3.5	Α
Luminosity	-	~1E+36	~1E+36	1/cm ² s

Electron Cloud Effect

- This is one of the most critical issue not only for ILC-DR (e+ DR), but also Super-B factories.
 - Primary photo-electrons by synchrotron photons.
 - ► The photoelectrons produce secondary electrons.
 - ► Rapid multiplication of the number of electrons can cause beam instabilities.

M. Palmer

E-cloud threshold

- Beam instability starts at cloud density of
 - ► ILC:1.2E+11 1/m³
 - ► Super-B : 2E+11 1/m³
- ► The cloud density in e+ ring has to be suppressed below the threshold.

Mitigation techniques

- Technologies to suppress the e-cloud
 - TiN/NEG coating
 - **Antechamber**
 - Solenoid field
 - Collector electrode
 - **Groove chamber**

Y. Suetsugu

CESR-TA focuses on the study of e-cloud mitigation.

Positron Source

- RDR: Undulator scheme
 - ► High energy (>125GeV) e⁻→undulator→photon (>10MeV)→e+
 - Undulator at 150GeV point (length ~150m)
 - accelerate or decelerate electron in the remaining 100GeV section to reach 50~250GeV

Rotating target (100M/s) for avoiding heat accumulation during 1ms beam

Issues

- Rotating target (vacuum, eddy current)
- Capture device (feasibility of flux concentrator with 1ms pulse?)
- Electron linac must be operated always at full gradient up to 150GeV to get sufficient yield of positron (commissioning problem)

Positron in SB2009

- Replace flux concentrator with Quarter Wave Transformer (less efficient but safer)
 - → longer undulator (=230m), higher target load
- ► Place undulator at linac end (250GeV point)
 - No deceleration
 - Higher positron yield at high energy (>300GeV CM)
 - But poor yield below 300GeV CM (~half at 250GeV)
- Status
 - Many cures are being considered
 - R&D program proposed

KEK Positron R&D Plan

- KEK has not joined positron R&D (except Compton source).
- ▶ But in view of the slow progress of ILC positron R&D, decided to develop `conventional source' (a few GeV electron→target→e+)
- The present technology of `conventional source' is not sufficient for ILC.
- KEK facilitates
 - Liquid Lead Target (covered with boron-nitride window)
 - System test at ATF linac
 - Window test at KEKB abort line
 - ► Hybrid target (Crystal radiator
 - + Amorphous converter)
 - Yield test at KEKB linac

Summary

- ► ATF is a unique and important facility to prove the extremely low-emittance beam for LC projects.
- ▶ By ATF2 project, the role is expanded to the FF system. ATF2 examines feasibility of the local chromaticity correction optics.
- Developing the precise beam control and fine beam diagnostic is also important tasks for ATF/ATF2.
- ATF2 commissioning is aggressively continued.
- Several critical issues not covered by ATF/ATF2 are studied in various contexts
 - ► E-cloud
 - **▶** Positron

Acknowledgment

- Materials are provided by T. Terunuma, T. Okugi, S. Kuroda, T. Tauchi, J. Urakawa, Y. Ohnishi, and K. Yokoya.
- ►I am grateful to all members of the ATF collaboration for the great progress and the excellent work.