KEKB加速器 ップグレード計画 SuperKEKB 大西 幸喜

将来計画検討小委員会 @東京大学 11月7日、2009年

Luminosity of Collider

Luminosity ・よく知られているルミノシティの式

ルミノシティに限界があるとすれば、 話は単純ではない。

Y. Ohnishi / KEK

ルミノシティを高くするためには

- 1. ビーム電流(I)を大きくする
- 2. ビーム・ビーム パラメータ(ξ)の限界を高くする
- **3.** 衝突点のy方向ベータ関数(β_v^*)を小さくする
- **4.** ビーム エネルギー(γ)を大きくする
- **5.** カップリング $(\sigma_v^* / \sigma_x^*)$ を大きくする

ビーム エネルギーは目標とする物理で決定されるので 自由なパラメータとはならない。

水平面上にリングを作ると基本的に水平面に運動量分散 が生じるのでフラット ビーム(σ_y*/σ_x*<<1)となる。 x方向とy方向、同時に衝突点ベータ関数を絞り込むことは 非常に難かしい。

KEKB高度化の設計目標

- 目標ルミノシティは、8x10³⁵ cm⁻²s⁻¹
- Nano-beam方式でKEKB加速器の40倍を目指すには、
 - ・ ビーム電流 1.7/1.4 → 3.6/2.6 A (~2倍)
 - ・ ビームビーム・パラメータ 0.09 → 0.09 (~1倍)
 - ・ 衝突点垂直ベータ関数 5.9 → 0.27/0.42 mm (~20倍)
 - バンチ長6/5 mmと長くてもよい(KEKBと同等)。
- 大交差角衝突なので、クラブ空洞の導入はなし。
- 具体的なIR設計を含むリング全周のビーム光学系詳細設計 が進行中
 - 現状でLER >600秒, HER >700秒に対応する力学口径がある.
 - ソレノイド 磁場を取り入れて, 光学系設計の精度を上げる作業中. Y. Ohnishi / KEK

Beam Parameters

	KEKB Design	KEKB Achieved : with crab	SuperKEKB High-Current	SuperKEKB Nano-Beam
Energy (GeV) (LER/HER)	3.5/8.0	3.5/8.0	3.5/8.0	4.0/7.0
β _y * (mm)	10/10	5.9/5.9	3/6	0.27/0.42
ε _x (nm)	18/18	18/24	24/18	3.2/1.7
σ _y (μm)	1.9	0.94	0.85/0.73	0.059
ξγ	0.052	0.129/0.090	0.3/0.51	0.09/0.09
σ _z (mm)	4	~ 6	5/3	6/5
I _{beam} (A)	2.6/1.1	1.64/1.19	9.4/4.1	3.6/2.6
N _{bunches}	5000	1584	5000	2500
Luminosity (10 ³⁴ cm ⁻² s ⁻¹)	1	2.11	53	80

Finite-Angle Crossing Collision

Laboratory Frame

Head-on Frame

Collision Scheme

Crab-waist

ベータ関数が最小となるところを 相手のビーム軸に合わせる。 六極磁石で、進行方向に沿って、 キックが変化することを利用する。

Hourglass条件よりもベータ関数が絞れる。 ベータを絞った分ルミノシティは増加。 (2倍程度は行けそう) $\beta_y^* \leq \sigma_x^*/\phi$

Y. Ohnishi / KEK

Nano-Beam Schemeにおける Crab-waistの考え方

ダイナミックアパーチャ(力学口径)の減少 という問題。

KEKBアップグレードでは、 Crab-waistを使わなくても 8x10³⁵のルミノシティが得られるように パラメータ選択を行っている。

Crab-waistはバックアップ・オプション。

今までNano-beamに対して 消極的だったのか?

- Crab-waistが無いと駄目かも知れない。
 ダイナミックアパーチャが著しく狭くなる。
- 長いバンチ長のビームに対するビーム・ビーム
 シミレーションが確立されていなかった。
- ビーム光学系(衝突点を除く)、リングの磁石を 作り変えないという方針を取ってきた。
 - アップグレードのための建設期間短縮

- ビーム・ビーム シミレーションがコンピュー
 ティング技術の発達(スパコン)とともに成熟してきた。
- crab-waistなし(効かない)で高いルミノシティ が見込めるパラメータが見つかりつつある。
- ・ 色収差補正等の確立とダイナミック・アパー チャの目処が立ちつつある。

KEKB高度化の設計方針

- 14-th KEKB Accelerator Review Committee (2009年2月)以降、ナノビーム方式に基づいて設計 を進めてきた。
 - The Committee recommends that the machine design work concentrate on the low emittance option for the next few months, with a focus on identifying any possible showstoppers.
- これまでのところ、致命的な問題は見つかっていない。
- 引き続きナノビーム方式の詳細設計を進め、建設開始 に備える。

Machine Parameters

		LER	HER	
Emittance	ε _x	3.2	1.7	nm
Coupling	$\epsilon_{\rm y}/\epsilon_{\rm x}$	0.40	0.48	%
Horizontal beta at IP	β_x^*	32	25	mm
Vertical beta at IP	β_y^*	0.27	0.42	mm
Horizontal beam size	σ_x^*	10.1	6.5	μm
Vertical beam size	σ_y^*	0.059	0.059	μm
Bunch length	σ_{z}	6	5	mm
Half crossing angle	φ	41.3		mrad
Hourglass condition	σ_x^*/ϕ	0.245	0.157	mm
Beam Energy	Е	4	7	GeV
Beam Current	I	3.6	2.6	А
Number of bunches	n _b	2500		
Beam-beam parameter	ξγ	0.09	0.09	
Luminosity	L	8x10³⁵ Y. Ohnishi / KEK		cm ⁻² s ⁻¹

item 1

Low Emittance HER LER Increase Longer number bends of arc cells Y. Ohnishi / KEK (small dispersion)

HERのアーク部は全面的に変更. セル数を増やす

item 2

Low Beta at IP

Separated final quads Closer to IP Large crossing angle

IR超伝導電磁石システム構成: 主4極電磁石8台、補正ソレノイド2台、補正コイル43台

	磁場勾配 (T/m)	積分磁石強度 (T/m)∙m	4極磁石超伝導補 正コイル	対向ビーム漏れ磁場 超伝導補正コイル		
QC1RP	80.68	22.43	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂ , <i>b</i> ₄	<i>b</i> ₁ , <i>b</i> ₂ , <i>b</i> ₃		
QC1RE	72.83	26.22	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂ , <i>b</i> ₄	<i>b</i> ₁ , <i>b</i> ₂ , <i>b</i> ₃		
QC2RP	31.21	10.92	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂	<i>b</i> ₁ , <i>b</i> ₂ , <i>b</i> ₃		
QC2RE	32.28	12.91	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂			
QC1LP	58.74	22.91	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂ , <i>b</i> ₄	<i>b</i> ₁ , <i>b</i> ₂ , <i>b</i> ₃		
QC1LE	72.49	26.03	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂ , <i>b</i> ₄	<i>b</i> ₁ , <i>b</i> ₂ , <i>b</i> ₃		
QC2LP	31.32	10.96	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂			
QC2LE	12.95	14.13	<i>b</i> ₁ , <i>a</i> ₁ , <i>a</i> ₂			

ビーム衝突用超伝導4極電磁石(8台)

衝突点付近には、 測定器ソレノイド(1.5 T)の影響を消すために、 補償ソレノイドが置かれる。 $\int B_z(s) ds = 0$

ビーム軌道は螺旋軌道となり3次元的である。 x-y軸は、ビーム軸に沿って回転する

$$\varphi = \frac{e}{2p} \int_{IP} B_z(s) ds$$
 s: IPからの軌道に沿った距離

ソレノイド磁場内にある最終四極磁石も ビーム軸のまわりに回転して配置される。

Nano LER IR

Nano HER IR

Y. Ohnishi / KEK

item 3 **Dynamic Aperture*** for injection, **Touschek lifetime**

Local Chromaticity Correction with small emittance in IR

*Dynamic aperture: 力学口径、ビームの力学的安定領域

Y. Ohnishi / KEK

Nano-Beam LER

Nano-Beam HER

(1)入射キッカーにより、蓄積ビームは閉じたバンプ軌道となる。
 (2)入射ビームは、セプタムで蓄積ビームに寄せられつつ、
 ベータトロン振動しながら、蓄積ビームと合流する。

入射振幅と入射ビームの大きさの合計が、要求されるアパーチャとなる。 また、入射ビームのバンチ長に相当するエネルギー方向のアパーチャも必要。 (物理的アパーチャおよびダイナミック・アパーチャ)

Injection Beam 入射振動は、入射ビーム・サイズおよび 蓄積ビームと入射ビームの接近度合い で決まる。

低エミッタンスの実現 陽電子:ダンピングリング 電子:RF電子銃

セプタムの壁の厚み分の入射振動を リングの安定領域に包含かつ エネルギーアクセプタンスもバンチ長相当必要。

Touschek Lifetime

バンチ内粒子のメラー散乱。

粒子同士の衝突により、 進行方向の運動量を交換する。

基準粒子からずれた運動量を持つ粒子は、 ポテンシャルの安定領域から外れると失われる。

Y. Ohnishi / KEK

Touschek Lifetime (cont'd)

Touschek lifetimeを確保するために:

ダイナミック・アパーチャを最大限大きくする。 ビーム・エネルギーを最適化する。

LER(e+) x HER(e-) 4 GeV x 7 GeV

 $\tau \propto \frac{E^3}{N}$

LER Dynamic Aperture (stored beam)

HER Dynamic Aperture (stored beam) Both X-LCC and Y-LCC scheme

加速器構成要素の高度化

真空システム HSCと同じ基本設計。LERは銅からアルミ製と してコスト削減の可能性あり。

高周波加速システム 電流2倍に対応する増強。低電圧大パワー対応。

ビームモニターシステム

電力消費量(放射光ロス)

(LER/HER)	KEKB Design	KEKB Achieved : with crab	SuperKEKB High-Current	SuperKEKB Nano-Beam
Energy (GeV)	3.5/8.0	3.5/8.0	3.5/8.0	4.0/7.0
U ₀ (MeV)	1.64/3.48	1.64/3.48	1.23/3.48	2.293/2.145
I _{beam} (A)	2.6/1.1	1.64/1.19	9.4/4.1	3.6/2.6
P _{rad} (MW)	4.26/3.83	2.69/4.14	11.56/14.27	8.26/5.58
P _{rad} [LER+HER] (MW)	8.09	6.83	25.83	13.83

ランニング・コストの問題は低減。

エネルギーの自由度

ブーストを変えないで、 ~3.6 GeVから10.86 GeVまで変えられるか?

衝突点ソレノイド領域でのビーム軌道の変化。 測定器ソレノイドの強さを変えない限り避けられない。

ソレノイド磁場ゼロというのが加速器にとって理想的。

磁石(偏向磁石、四極磁石等)の励磁特性の測定領域の問題。

$L \propto E_{\pm}I_{\pm}$ エネルギーに伴う ルミノシティ依存は避けられない。

偏極ビームの可能性

- リングの衝突点領域にスピン・ローテターを入れる。
 - transverseをlongitudinalに変換
 - solenoid(dipoleは垂直エミッタンスが発生)
- 偏極ビーム(vert.)を入射する。
 - long. polarization timeとビーム寿命の問題
- ビーム・エネルギーは任意に選べない?

まとめ

- ・KEKB高度化は、Nano-Beam Schemeで いく予定。
- 今のところ、致命的な困難に直面していない。
- ビームエネルギー、測定器ソレノイドの強さ等、
 加速器と測定器の共通課題には最適化の余地。
- エネルギー変更自由度と偏極ビームは今後の課題。

Appendix

1. 高いビーム電流を 実現するために

加速空洞の増強 真空システムの増強

2. 高いビーム・ビーム パラメータを 実現するために

カ学的運動を単純化 する必要がある。

Beam-beam force

■ The electric and magnetic field can be written by:

$$E_r = \frac{\lambda r}{2\pi a^2 \varepsilon_0} \qquad B_{\varphi} = -\frac{\mu_0 \lambda r \beta c}{2\pi a^2} = -\frac{\beta}{c} E_r$$

 $\boldsymbol{\lambda}$ is a longitudinal line charge density.

$$\varepsilon_0 \mu_0 = 1/c^2$$

Lorentz force can be expressed by:

$$F_r = -e\left(E_r - c\beta B_\varphi\right) = -e\left(1 + \beta^2\right)E_r \cong -2eE_r \qquad v \approx c$$

Beam-beam force is proportional to the electric field and an attracting force.

Beam-Beam Parameter In case of Gaussian beam:

Nonlinear Force

Error function $w(z) = \exp(-z^2)\{1 - \operatorname{erf}(-iz)\}$

 $\xi_x \propto F_x$ $\xi_v \propto F_v$

Linear part of beam-beam force = Beam-Beam parameter ξ

3次元運動を 独立した1次元運動x3に転換できれば、 非線形力が増しても 安定な運動となる。

クラブ空洞とベータトロンチューンを半整数共鳴に近づける。

x-z 相関を解消

x−y 相関を解消

大きなビーム・ビーム パラメータが 期待できる。

KEKBおよび SuperKEKB(HCS)の指導原理

Y. Ohnishi / KEK

Horizontal Tune close to Half Integer

• In the collision of two beams, particles interact with fixed beam at either x or -x for $v_x=0.5$.

$$x(n) = \sqrt{2J_x\beta_x}\cos(2\pi\nu_x n + \psi_{x0})$$

n: turn number (integer)

- In the case of crab crossing, the phase space structure in y-p_y at x is the same as that at -x because of symmetry of the fixed beam.
- System becomes one dimensional and avoids bad resonances, the beam-beam parameter can be increased.

3 DOF
$$2+1$$
 DOF $1+1+1$ DOF
Crab-crossing (resolve xz coupling) (resolve xy coupling)

• This technique realizes high luminosity at KEKB/HCS. To make this possible, machine errors must be reduced significantly. Y. Ohnishi / KEK 50

History of Beam-Beam

Y. Ohnishi / KEK

3. ベータ関数を 小さくするためには

正面衝突では

バンチ長も短くする 必要がある。

Beam Spot Size near IP

Hourglass effect

衝突点ベータ関数を絞れば絞るほど、衝突点から離れるについれて ビームサイズの大きくなる割合が大きくなる(z依存が大きくなる)。

バンチ長が衝突領域長の場合、Hourglass効果を低減するために、 バンチ長をベータ関数と同程度または以下となるように短くする必要がある。

コヒーレント放射光(CSR)

バンチ長よりも長い波長領域の放射光を、 コヒーレント放射光と呼ぶ。

長い波長からするとバンチ長は点と 見なせるので位相の揃った光が 各荷電粒子から放出される。

短いバンチほどコヒーレント放射光の 波長領域が増えるので深刻となる。

コヒーレント放射光

インコヒーレント放射光: 電場 E ~ N^{1/2} 放射パワー ~ N コヒーレント放射光: 電場 E ~ N 放射パワー ~ N²

(Nは、バンチ内荷電粒子数)

コヒーレント放射光 (cont'd)

(1) バンチの後方から放出されたコヒーレント放射光は、 偏向磁石内を直進してバンチの前方に当たる。

(2) バンチの前方から放出されたコヒーレント放射光は、 真空容器の壁で反射してバンチの後方に当たる。

以上のような仕組みでビームに悪影響を及ぼす。

図 17: CSR の幾何学。電子の速さはほとんど光速なの で、破線の長さと円弧 $B \rightarrow B'$ 、 $A \rightarrow A'$ の長さは同じ。

図 19: ビームパイプによる遮蔽。

図の引用:OHO'07 横谷氏テキストより

大電流方式(HCS)での問題点

- 大電流, 短バンチ(3 mm), クラブ交差, 大ビームビー ムパラメータ(~0.3), 方式では、
 - クラブ交差でシミュレーションどおりの大きいビームビーム
 パラメタを達成するには、さらにブレークスルーが必要.
 - 大ビームビームパラメータ、かつ、βx* = 20 cm の現実的 な衝突点設計ができていない. 特に放射光の取り扱い。
 - CSRの影響により LER のバンチ長は >5mm に伸びてしまう.
 ルミノシティを回復するには, Travel Waist の導入が必要になる.
- もともと、10³⁵ cm⁻²s⁻¹が目標であった(2001)。

The Polarized Electron Gun for the SLC D. C Schultz, J. Clendenin, J. Frisch, E. Hoyt, L. Klaisner, M. Woods, D. Wright, M. Zolotorev Stanford Linear Accelerator Center, SLAC-PUB-5768, March 1992

- 120 kV

Y. Ohn GaAs photocathode

1. Compton 2. Polarized Breamstrahlung 3. Selective Compton

ビーム・ビーム パラメータ

運動方程式(垂直方向:y)は

$$\frac{dp_y}{dt} = F_r \sin\varphi = -2eE_r \sin\varphi$$

運動量の変化は、、

$$\Delta p_{y} = -\int_{-\infty}^{+\infty} 2eE_{r}\sin\varphi \cdot dt$$

ビームが相手のビームの作る電磁場によってキックされる量は

$$\Delta y' = \frac{\Delta p_y}{p_0} \cong -\frac{4\pi\xi_y}{\beta_y^*} y \quad \substack{\text{set} - \frac{1}{\beta_y^*}}{\text{fille}} y$$

ξをビーム・ビーム パラメータと呼ぶ。 水平方向(x)も同様。 作用としては、凸レンズ。

Y. Ohnishi / KEK

Beam-beam force (cont'd)

We call this slope $(\xi_{X,Y})$ a beam-beam parameter.

Beam-beam parameter

$$\xi_{y}^{\pm} = \frac{r_{e}}{2\pi\gamma_{\pm}} \frac{N_{\mp}\beta_{y}^{*}}{\sigma_{y}^{*}(\sigma_{x}^{*}+\sigma_{y}^{*})} R_{\xi y}$$

Maximum luminosity is given by:

$$L \propto N_{+}N_{-} = \xi_{y}^{-}\xi_{y}^{+} \leq \left(\frac{\xi_{y}^{-} + \xi_{y}^{+}}{2}\right)^{2} = \xi_{y,\max}^{2}$$
$$\xi_{y}^{-} = \xi_{y}^{+} \longrightarrow \frac{N_{+}}{\gamma_{-}} = \frac{N_{-}}{\gamma_{+}} \qquad \sqrt{ab} \leq \frac{a+b}{2}$$

Beam-beam parameter

$$\xi_{y}^{\pm} = \frac{r_{e}}{2\pi\gamma_{\pm}} \frac{N_{\mp}\beta_{y}^{*}}{\sigma_{y}^{*}(\sigma_{x}^{*}+\sigma_{y}^{*})} R_{\xi y}$$

In case of Nano-Beam scheme:

$$\xi_{y}^{\pm} = \frac{r_{e}}{2\pi\gamma_{\pm}} \frac{N_{\mp}}{\sigma_{z}\phi} \sqrt{\frac{\beta_{y}^{*}}{\varepsilon_{y}}} R_{\xi y} \qquad \sigma_{x}^{*} = \sqrt{\varepsilon_{x,y}}\beta_{x,y}^{*}$$

$$\sigma_{z}^{*} = \sigma_{z}\phi \qquad \varepsilon_{y} = \kappa\varepsilon_{x}$$

垂直ベータ関数を絞りつつ、ビームビームパラメータを維持するためには、 同時に垂直エミッタンスも小さくする必要がある。

65

imbalance of bunch charge

Injection rate: 10mA/s

- (Injection eff. = 50%)

 $I(t) = I_0 e^{-\frac{t}{\tau}} \quad \frac{dI}{dt} = -\frac{I}{\tau}$

– Linac 4nC/bunch -> 8nC/pulse

- 25Hz -> 200nC/s -> 20mA/s

Loss rate

Injection rate

- I_{beam}=3.8A, N_b = 2500 -> 1.52mA/bunch, 15.2nC/bunch
- 25Hz injection -> 50 bunches/s -> 50sec for whole bunches
- Charge imbalance -> 15.2nC +/- 1nC (+/- 6.6%)
 - Maybe somewhat worse in a real situation

SuperKEKB 入射に必要な電荷量 (陽電子)

Positron Damping Ring

現在の4倍以上のバンチ電荷を受け入れることが可能(**4 nC/bunch**)

```
Energy Compression System
Bunch Compression System を入出射路に装備
```

- •広い力学口径(Ax=25µm, Momentum aperture=±1.5%)
- 高いエミッタンス低減率: 2000 nm →13 nm

菊池

High Current Nano-beam

Bunch length requirement :

$$\sigma_z < \frac{\sigma_x^*}{\phi} \to \infty (\phi \to 0)$$

Hourglass requirement :

$$\beta_y^* \geq \sigma_z$$

Luminosity :

$$L \propto \frac{N_+ N_-}{\sigma_x^* \sigma_y^*}$$

 $L \propto \frac{N_+ N_-}{\phi \sigma_- \sigma_+^*}$

Beam-beam parameter :

Parameter Considerations

Beam current:

Keep luminosity: $L \propto E \cdot I$

Damping time:

$$\tau_x = \tau_y = 2\tau_s = \frac{2ET}{U}$$

Bunch length:

Keep bunch length:

Energy spread:

Synchrotron tune:

$$\sigma_{z} = \frac{C\alpha_{p}}{2\pi v_{s}} \sigma_{\delta} \propto \sqrt{\frac{\alpha_{p}E^{3}}{V_{RF}}}$$
$$\sigma_{\delta} = \gamma \sqrt{\frac{C_{q}}{2\rho}} \propto E$$
$$v_{s} \propto \sqrt{\frac{\alpha_{p}V_{RF}}{E}}$$

Increase E, decrease I Decrease E, increase I

Increase E, increase U Decrease E, decrease U

Energy loss/turn $U \propto E^4$

Increase E, increase V_{RF} Decrease E, decrease V_{RF} if α_p is fixed.

 $\sigma_{\delta} \operatorname{can not}_{S} \operatorname{be controlled}_{G_q} = \frac{55}{32\sqrt{3}} \frac{\hbar}{mc} = 3.832 \times 10^{-13} \text{ m}$

Smaller v_s is preferable.