

Tau & Charm Physics

Toru lijima Nagoya University

November 7, 2009 HEC sub-committee for future planning

Talk Outline

- Charm Physics
- Tau Physics
- Run (machine) at tau-charm threshold ?

Super B factory is also $\sigma(e^+e^- \rightarrow B\overline{B}) \approx 1.1 \text{ nb}$

Super Tau factory $\sigma(e^+e^- \rightarrow \tau^+\tau^-) \approx 0.91$ nb Super Charm factory

 $\sigma(e^+e^- \rightarrow c\overline{c}) \approx 1.3$ nb

Physics with O(10¹⁰) τ and charm / year

Target of Charm Physics 1

NP Search: DD-mixing and CPV

- Tiny in SM $O(10^{-2}) \rightarrow O(10^{-3})$
 - GIM cancellation
 - Double Cabibbo suppressed
 - CPV from phase of V_{cs}

- If larger than expected \rightarrow signal of NP
 - Unique probe for NP coupling to up-type quarks.

Example: R-violating SUSY

NP and D-D mixing

Phenomenology

 Time evolution by flavor states ≠ H_{eff} eigenstates: (defined flavour) (defined m_{1,2} and Γ_{1,2})

$$|D_{1,2}\rangle = p |D^0\rangle \pm q |\overline{D}^0\rangle$$
$$x \equiv \frac{m_1 - m_2}{\Gamma}, \quad y \equiv \frac{\Gamma_1 - \Gamma_2}{2\Gamma}$$

$$P^{0} = K^{0}, B_{d}^{0}, B_{s}^{0} \text{ and } D^{0}$$

$$|D^{0}(t)\rangle = \left[|D^{0}\rangle \cosh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) - \frac{q}{p}|\overline{D}^{0}\rangle \sinh\left(\frac{ix+y}{2}\overline{\Gamma}t\right) \right] e^{-i\overline{m}t - \frac{\overline{\Gamma}}{2}t}$$
$$\frac{dN(D^{0} \rightarrow f)}{dt} \propto e^{-\overline{\Gamma}t} \left| \langle f | D^{0} \rangle + \frac{q}{p} \frac{ix+y}{2} \langle f | \overline{D}^{0} \rangle \right|^{2}$$

Decay time distribution of states accessible to D^0 , D^0 is sensitive to x and y.

Measurements of D-D mixing

3 approaches

- Decays to CP eigen states: $D^0 \rightarrow K^+K^-/\pi^+\pi^-$.vs. $K^-\pi^+$
- Wrong sign decays: $D^0 \rightarrow K^-\pi^+$
- Time-dep. Dalitz : $D^0 \rightarrow K^-\pi^-\pi^0$, $K_s \pi^+\pi^-$

$$y_{CP} = y\cos\phi - \frac{A_M}{2}x\sin\phi$$
$$A_{\Gamma} = \frac{\tau(\overline{D}^0 \to K^-K^+) - \tau(D^0 \to K^+K^-)}{\tau(\overline{D}^0 \to K^-K^+) + \tau(D^0 \to K^+K^-)}$$
$$= \frac{A_M}{2}y\cos\phi - x\sin\phi$$

Prospect at Belle II

Expected constraints with 50ab⁻¹

• 1, 2, 3 σ @ 50 ab

 $\delta x = \pm 0.087\%$ (current: ± 0.25) $\delta y = \pm 0.062\%$ (± 0.18) $\delta R_{_{D}} = \pm 0.001\%$ (± 0.01) $\delta A_{D} = \pm 0.3\% (\pm 2.4)$ $\delta |q/p| = \pm 0.055 (\pm 0.16)$ $\delta \phi = \pm 2.8^{\circ} (\pm 7.5^{\circ})$

Target of Charm Physics 2

Precision CKM to over constrain NP together with B

Need good understanding for fundamental parameters calculated by lattice QCD

- B decay constant f_B
 - V_{td} by B-B mixing, V_{ub} (or H[±])by B $\rightarrow \tau v$
- $B \rightarrow \pi$ form factor f $_{B \rightarrow \pi}$

 V_{ub} by $B \rightarrow \pi I \nu$

Precise measurements in D decays as calibration of lattice QCD

- $f_D by D \rightarrow \mu v$
- $f_{D \rightarrow \pi}$ by $D \rightarrow \pi \mid v$

D decay constant f_D / f_D

Target of Charm Physics - 3

エキゾチックハドロン @ Belle II

<u>c</u>

ı1

Why do we want to study τ decays ?

 τ = the heaviest lepton in the 3rd gen.

 $[m=1776.84\pm0.17 \text{ MeV/c}^2, \tau=(290.6\pm1.0)x10^{-15}s]$

Many physics involved in the production and decays.

Goof probe for

- Electromagnetic interaction
- Weak interaction
- Strong interaction
- Small theory errors

Experimental sensitivity not limited

by theory errors

And,

- Sensitive to New Physics
 - Lepton Flavor Violation
 - CP violation, EDM, lepton universality

Lepton Flavor Violation

Quarks have flavor mixing. Neutrino mixing has been found. What about charged leptons ?

(Original figure by Dr. Kuno / Osaka Univ.)

 τ decays probe mixings between $3 \Leftrightarrow 2$ and $3 \Leftrightarrow 1$ generations.

 $\mu(e)$

B factory is also a tau factory

Role of LFV in τ decays

 In case of SUSY, LFV processes are induced by offdiagonal elements of the <u>slepton mass matrix</u>.

Sensitive to the SUSY breaking mechanism

LFV in τ decays probes NP flavor mixing bet. 3⇔1, 3⇔2 generations.

LFV in τ decays with NP

In SM, negligibly small even including neutrino oscillation.

$$Br(\tau \to \mu \gamma) = \frac{3\alpha}{32\pi} \left| \sum_{i=1,2} U_{\tau i}^* U_{\mu i} \frac{\Delta m_{i}^2}{m_w^2} \right|^2 < 10^{-54}$$

U : MNS neutrino mixing matrix $\Delta m_{ij}^2 = m_{vi}^2 - m_{vj}^2$

:Neutrino mass square difference

Example: SUSY + Seasaw (J.Hisano et. al., PRD60 (1999) 055008)

$$Br(\tau \rightarrow \mu\gamma)$$
; $3.0 \times 10^{-7} \times \left(\frac{\tan \beta}{60}\right)^2 \left(\frac{1 \, TeV}{m_{SUSY}}\right)^4$
 \blacksquare Br($\tau \rightarrow \mu\gamma$)=O(10^{-7~9})

- Many extensions of the SM predict LFV decays.
- Their branching fractions are enhanced as high as current and near future experimental sensitivity .

LFV is a clear signature of NP, if observed.

LFV in Higgs mediated model

These decays become important when sleptons are much heavier than weak scale

τ→3μ (A.Brignole, A.Rossi, PLB 566 (2003) 217)

$$\mathcal{B}(\tau \to 3\mu) \sim 10^{-7} \left(\frac{\tan \beta}{50}\right)^6 \left(\frac{100 \text{ GeV}/c^2}{m_A}\right)^4 \left(\frac{|50\Delta_L|^2 + |50\Delta_R|^2}{10^{-3}}\right)^{-3}$$

τ→μη (M.Sher, PRD 66 (2002) 057301)

$$\mathcal{B}(\tau \to \mu \eta) \simeq 8.4 \times 10^{-7} \left(\frac{\tan \beta}{60}\right)^6 \left(\frac{100 \text{ GeV}/c^2}{m_A}\right)^4$$

 $\tau \rightarrow \mu \eta$ may be enhanced.

 $Br(\tau \rightarrow \mu \eta) : Br(\tau \rightarrow 3\mu) : Br(\tau \rightarrow \mu \gamma) : 8.4 : 1 : 1.5$

NP signature in $\tau \rightarrow l \gamma$, lll

• The two decays have different sensitivity for different NP models. ν

	Reference	τ◊μγ	τ◊μμμ
SM + heavy Maj v_R	PRD 66(2002)034008	10 ⁻⁹	10 ⁻¹⁰
Non-universal Z'	PLB 547(2002)252	10 ⁻⁹	10 ⁻⁸
SUSY SO(10)	PRD 68(2003)033012	10 ⁻⁸	10 ⁻¹⁰
mSUGRA+seesaw	PRD 66(2002)115013	10 ⁻⁷	10 ⁻⁹
SUSY Higgs	PLB 566(2003)217	10 ⁻¹⁰	10 ⁻⁷

Searches in various LFV modes help to discriminate NP models.

 $\mu(e)$

 $\overline{\mu}(\overline{e})$

 $\mu(e)$

SUSY-GUT

• SU(5)+ v_R , non-degenerate $v_R(I)$, normal Hierarchy

If MEG find $\mu \rightarrow e_{\gamma}$ at ~10⁻¹³, good chance to see also $\tau \rightarrow \mu_{\gamma}$ at 10^{-8 \rightarrow -10} Even if MEG does not, still important to search for $\tau \rightarrow \mu_{\gamma}$.

Muon g-2 & $\tau \rightarrow \mu \gamma$

• 3.4 σ discrepancy found in the muon g-2.

 $\delta a_{\mu}^{NP} = a_{\mu}^{exp} - a_{\mu}^{SM} = (27.6 \pm 8.1) \times 10^{-10}$ Fix the mass scale

• Correlation to $\tau \rightarrow \mu \gamma$

$$BR(\tau \rightarrow \mu\gamma) \sim 10^{-8} \left(\frac{\delta a_{\mu}^{NP}}{10^{-9}}\right) \left(\frac{\theta_{\tau \mu}}{10^{-2}}\right)^2$$

Their diagrams are similar except for the flavor mixing.

Experiments

- LFV is forbidden in SM, therefore, very clear NP signal.
- Appearance is also very clear.
 Identified as a peak in M_{inv}.

Much more at Super-KEKB !

• B-factory provides unprecedented large 4 sample of τ leptons. 3

B-factory is τ -factory !

Statistics

Facility	#τ			
CLEO	107			
BES-III	10 ⁸			
B-factory	10 ⁹			
Super B factory	10 ¹¹			
Que an taux als area (DIND) :				

Super tau-charm (BINP) : a few x $10^{10} (10^{35} \text{cm}^{-2} \text{s}^{-1})$

(Super) B factories dominate the results

 $\tau \Diamond \mu \gamma, e \gamma$

- Background: $\tau \rightarrow \mu \nu \nu / e \nu \nu + ISR$ (or beam background)
- Small amount of $\mu\mu$ events in $\Delta E>0$

$\tau \rightarrow \mu \gamma$ background

$\tau \rightarrow 3$ leptons from Belle

Belle

• Data: 782fb⁻¹

– Prev.: 543fb⁻¹

- No event is found in the signal region.
- Dominant BG;
 Bhabha
 e⁺e⁻→e⁺e⁻µ⁺µ⁻
- B<(1.5-2.7)x10⁻⁸
 - Improved from (2.0-4.1) x10-8 @543fb-1

The most stringent upper limits among LFV $\boldsymbol{\tau}$ decays

Still a few background \rightarrow Will be improved by 1/L_{int}

$\tau \rightarrow l\eta, l\eta', l\pi^0$

τ→e/μ + η,η', π^0 @ 401fb⁻¹

(PLB648, 341 (2007))

Br(τ→Iη,Iη',Iπ⁰) <(6.5-16)×10⁻⁸ 90%C.L.

$\tau \rightarrow$	η/η'/ π⁰→	Eff(%)	N(exp)	N(obs)	N UL (90%CL)	Br UL (90%CL)	Combined
μη	$\pi^+\pi^-\pi^0$	6.8	0.24	0	2.2	20	6.5
	γγ	6.4	0.40	0	2.1	12	
eη	$\pi^+\pi^-\pi^0$	4.7	0.53	0	2.0	26	9.2
	γγ	4.6	0.25	0	2.2	17	
μh'	π+π-η	4.9	0	0	2.5	41	13
	ργ	5.4	0.23	0	2.2	19	
eh'	π+π-η	4.3	0	0	2.5	47	16
	ργ	4.8	0	0	2.5	25	
$\mu\pi^0$	γγ	4.5	0.58	1	3.8	12	
$e\pi^0$	γγ	3.9	0.20	0	2.2	8	

Only a few background \rightarrow Will be improved by 1/L_{int}

Signal MC

$\tau \rightarrow$ III: Background suppression

electron-veto on the tag-side_

(e-e+e- and
$$e-\mu+\mu-$$
)
 γ -conversion veto
(e-e+e- and μ -e+e-)
 m^{2}_{miss} and p_{miss}
(e-e+e-, $\mu-\mu+\mu-$,
 $e-\mu+\mu-$, μ -e+e-)

mode	μ ⁻ μ ⁺ μ ⁻	e⁻e⁺e⁻	μ⁻e⁺e⁻ e ⁻μ⁺μ⁻	μ⁺e⁻e⁻ e⁺μ⁻μ⁻
Dominant bkg.	ττ <mark>qq</mark> μμμμ	Bhabha eeee ττ	ee μμ ττ μμ	ττ qq

LFV results

Constraints on New Physics

- Constraints depend on NP models.
- Examples to illustrate the sensitivity
 - -MSSM w/ seesaw

$$Br(\tau \rightarrow \mu\gamma) = 3.0 \times 10^{-6} \times \left(\frac{1 \, TeV}{m_{SUSY}}\right)^4 \tan^2 \beta$$

PRD60, 055008 (1998)

-Higgs-mediated model

$$Br(\tau \to \mu\eta) = 8.4 \times 10^{-7} \times \left(\frac{\tan\beta}{60}\right)^6 \left(\frac{100GeV}{m_A}\right)^2$$

PRD66, 057301 (2002)

Useful information are being obtained.

Future Prospects

LFV sensitivity depends on the background level.

T→ ℓγ
 Sensitivity is currently limited due to background from ττγ (ISR).

• T→3ℓ, ℓ+M

Negligible background at 1ab⁻¹. A few BG events at 10ab⁻¹.

Good PID

Mass restriction to select mesons.

Sensitivity dependence on luminosity

 $\propto \frac{1}{\sqrt{L}}$

Future prospects

- Super B-factory: $L_{int} = 10 \rightarrow 50 ab^{-1}$ $N_{\tau} = (1 \rightarrow 5) \times 10^{10}$
- Recent improvement in the analysis
 - BG understanding
 - Intelligent selection
- At 50 ab^{-1} Br($\tau \rightarrow \mu\gamma$) < O(10⁻⁹) Br(τ $\langle III$) < O(10⁻¹⁰)

Good chance to see NP !

τ τγ BG events in $\tau \rightarrow \mu \gamma$ analysis

If we can remove BG events caused by ISR completely...

When we run an accelerator with lower energy than Y(4S), Can we reduce these ISR BG events?

Low energy running

Operation near $\tau\tau$ threshold for $\tau \rightarrow \mu\gamma$ search

Advantage

Larger cross section

max. at $\sqrt{s} = 4.25 \text{ GeV}$

 $\sigma(\tau\tau)$ ~3.6nb (x 4 wrt 4S)

Dramatic reduction of ττγ background

Ey from $\tau\tau\gamma$ is low, and separated from the signal region.

E_{γ} (CMS) from $\tau \rightarrow \mu \gamma$ and ISR($\tau \tau \gamma$)

Cont'd

Disadvantage

- Lower luminosity ?
- Higher μμγ background
 σ(ττ) ~3.6nb (x 4 wrt 4S)
 σ(μμ)~6.4nb (x 6.2 wrt 4S)
- What about for $\tau \rightarrow 3\mu$

A.Shoning @ TAU06

• Need more studies

Machine running near threshold w/ L > 10³⁶ cm⁻²s⁻¹ would be interesting !

cf: Super Tau-Charm (BINP), INFN Super-B L = 10^{35} cm⁻²s⁻¹ near threshold.

Layout of injection using VEPP-5

Summary

- Super-B is also a Super Charm factory:
 - D-D mixing, CPV at sensitivity of $O(10^{-3})$.
 - Crucial tools for super-precise CKM.
 - Exotic hadrons.
- Super-B is also a Super Tau factory:
 - LFV search at $O(10^{-9}) \rightarrow O(10^{-10})$
 - Will become more & more important.
 - Especially when signals found at MEG, LHC...
 - Not limited by theory (hadronic uncertainty)
 - We must be ready for some options to maximize physics outputs.

Summary

• LFV is one of the front runners to find NP.

If found, new paradigm of particle physics research Tau provide rich physics programs there !

Backup

D-D mixing in SM

Standard Model predictions of D⁰-D⁰ mixing

 Prediction largely differs among models, but in recent models, x and y are expected to be ~1% in SM.

Prospect at Belle II

Estimated by B. Golob

- Statistical error scaled w/L
- Systematic error
 - Scale component ex: Ratio of DCS/CF \leftarrow improved w/L Non-scale component ex: Model dependence,

Detector resolution limit

L0=540 fb

CP eigen state: $D \rightarrow KK/\pi\pi$ 1)

Assuming the Pentaquark production is the same as baryon production we expect the total production of Θ_{s}^{+} , Ξ_{5}^{--} 4 per event continuum to be $\Theta_{s}^{+} = 7 \times 10^{-4}$, $\Xi_{5}^{--} = 3 \times 10^{-5}$

XYZ found at B-factories

State	M(MeV)	Γ(MeV)	JPC	Decay	Production
$Y_{s}(2175)$	2175 ± 8	58 ± 26	1	$\phi f_{0}(980)$	ISR
X(3872)	3871.4 ± 0.6	< 2.3	1++	$\pi^+\pi^-J/\psi, \gamma J/\psi$	B decay
X(3875)	3875.5 ± 1.5	3.0 ^{+2.1} -1.7		$D^0 \overline{D}{}^0 \pi^0$	B decay
Z(3940)	3929 ± 5	29 ± 10	2++	$D\overline{D}$	Two-photon
X(3940)	3942 ± 9	37 ± 17	J^{P+}	$D\overline{D}^*$	Double ⁻ charm
Y(3940)	3943 ± 17	87 ± 34	J^{P+}	$\omega J/\psi$	B decay
Y (4008)	4008 ⁺⁸² -49	226 ⁺⁹⁷ ₋₈₀	1-+	$\pi^+\pi^-J/\psi$	ISR
Z(4051)	4051 ⁺²⁴ -43	82 ⁺⁵¹ -28	?	$\pi^+\chi_{C1}$	B decay
X(4160)	4156±29	139 ⁺¹¹³ -65	J^{P+}	$D^*\overline{D}^*$	Double-charm
Z(4248)	4248+185	177^{+320}_{-72}	?	$\pi^+\chi_{C1}$	B decay
Y(4260)	4264 ± 12	83±22	1	$\pi^+\pi^-J/\psi$	ISR
Y(4350)	4361±13	74 ± 18	1	$\pi^+\pi^-\psi'$	ISR
Z(4430)	4433±5	45 ⁺³⁵ ₋₁₈	?	$\pi^+\psi'$	B decay
Y(4660)	4664 ± 12	48±15	1	$\pi^+\pi^-\psi'$	ISR
$Y_{b}(10890)$	10889.6 ± 2.3	54.7 ^{+8.9}	1	$\pi^{+}\pi^{-}\Upsilon(nS)$	$e^+e^- \rightarrow Y_b$

Tetraquark

 $D^{(*)}D^{(*)}$ Molecule

Hybrid

SUSY-GUT

Hisano, Nagai, Paradisi & Shimizu arXiv: 0904.2080

If U_{e3} is tiny, $\tau \rightarrow \mu \gamma$ still within the Super B factories reach, while $\mu \rightarrow e \gamma$ could be too small to be seen by MEG.

LFV analysis

- Signal side:
 τ → decay of interest
- Tag side:
 - $\tau \rightarrow 1 \text{ trk w/ n } \gamma + \text{missing}$
 - 1-prong decays occupy >80% of the τ decay.
 - Loose constraint on ν based on $P_{\text{miss}},$ $M^2_{\text{miss}}.$
- Background
 - $\tau\tau$, continuum (qq), $\mu\mu$, ee, ...
- Particle ID
- Signal evaluation based on $M_{inv} \sim M\tau \& \Delta E \sim 0$ $\Delta E = E_{rec} - E_{beam}$
- Signal region is open after analysis cuts are finalized.

LFV τ decays; Signal and Background

LFV results

	Belle	lum(fb ⁻¹)	BaBar	lum(fb ⁻¹)		Belle	lum(fb ⁻¹)	BaBar	lum(fh ⁻¹)
τ→μν	45	535	44	470+31+15	τ→uKs	23	671	33	469
τ→ev	12	535	3.3	470+31+15	τ⇒eKs	2.6	671	4.0	469
τ→un	6.5	401	15	339	τ→uKsKs	8.0	671		
τ→eŋ	9.2	401	16	339	τ→eKsKs	7.1	671		
τ→μπ ⁰	12	401	11	339	τ→μππ	3.3	671	29	221
τ→eπ ⁰	8.0	401	13	339	τ→еππ	4.4	671	12	221
τ→μη΄	13	401	14	339	τ→μΚπ	10	671	32	221
τ→eη'	16	401	24	339	τ→eKπ	5.2	671	17	221
τ→μμμ	2.1	782	3.3	467	τ→μπΚ	16	671	26	221
τ→еµµ	2.7	782	3.2	467	τ→еπК	5.8	671	32	221
τ→µee	1.8	782	2.2	467	τ→μΚΚ	6.8	671	25	221
τ→eee	2.7	782	2.9	467	τ→eKK	5.4	<mark>671</mark>	14	221
τ→μеμ	1.7	782		467	τ-τημπ	34	671	7.0	221
τ→еµе	1.5	782		sign		88	671	27	221
τ→μρ	6.8	54 <mark>3</mark>	2.6	451	τ→πμκ	9.4	671	22	221
τ→ер	6.3	54 <mark>3</mark>	4.6	751 ~ h	т⇒леК	6.7	671	18	221
τ → μK*	5.9	54 <mark>3</mark>	17			9.6	671	48	221
τ→eK*	7.8	54 <mark>3</mark>	5.9	451	τ→KeK	6.0	671	15	221
τ→ μK*	10	543	7.3	451	τ→µf ₀	3.4	671		
τ→eK*	7.7	543	4.6	451	$\tau \rightarrow ef_0$	3.2	671		
τ→μφ	13	543	19	451	$\tau \rightarrow \Lambda \pi$	7.2	154	5.8	237
τ→еф	7.3	543	3.1	451	$\tau \rightarrow \Lambda \pi$	14	154	5.9	237
τ→μω	8.9	543	10	451	$\tau \rightarrow \Lambda K$			15	237
τ→eω	18	543	11	451	$\tau \rightarrow \Lambda K$			7.2	237

What about polarized beam ?

Longitudinally polarized beams help to reduce the ISR background. arXiv:0810.1312 (study by INFN Super-B)

(ISR emission flips the spin of e+/- beam)

- Only one beam (electron)
 - Distribution of BKG shifted away from signal.
 - But, effect is not so significant ? Only 10% improvement in UL ?
- Both two beams
 - $\tau \tau \gamma$ events are inhibited.
 - \rightarrow dramatic suppression of BKG
 - <u>Require polarized e+ beam</u>

R&D for ILC (synergy!)

After discovery of LFV, pol. beam is useful to investigate helicity nature of NP.

In any case, need polarized beams without loosing L !

Polarized beam

- Italian SuperB option
- Tau EDM, g-2
- Search for CP/T violation in tau decays
- Search for LFV
 - BG reduction
- LFV signature
 - Physics structure

How to measure EDM, g-2

- Estimate tau spin direction from decay angles
- → <u>Momentum correlation</u>

Belle (30fb⁻¹)

 $-2.2 < Re(d_{\tau}) < 4.5 \ (10^{-17} \, e \, \text{cm}),$ $-2.5 < Im(d_{\tau}) < 0.8 \ (10^{-17} \, e \, \text{cm}).$

	EDM (e cm)				
	Limit	SM [4]			
е	$(0.18 \pm 0.12 \pm 0.10) imes 10^{-26}$	10^{-40}			
μ	$(3.7 \pm 3.4) { imes} 10^{-19}$	10^{-38}			
au	L3/LEP: $ d_{\tau} < 3.1 \times 10^{-16}$	10^{-37}			
	ARGUS: $ Re(d_{\tau}) < 4.6 \times 10^{-16}$				
	ARGUS: $ Im(d_{\tau}) < 1.8 \times 10^{-16}$				
n	$6 - 10 \times 10^{-26}$	$10^{-(30-31)}$			
Nuclei	$2 imes 10^{-24}$	10^{-30}			

- Polarized beam (P-odd)
 - Another correlation can be utilized.
 - \rightarrow Sensitivity improve by a factor of 4~5.

$$\begin{split} |\text{Re} \{d_{\tau}^{\gamma}\}| &\leq 4.4 \ 10^{-19} \ ecm, \text{ Babar} + \text{Belle at } 2ab^{-1} \\ |\text{Re} \{d_{\tau}^{\gamma}\}| &\leq 1.6 \ 10^{-19} \ ecm, \text{ SuperB/Flavor factory, 1 yr running, } 15ab^{-1} \\ |\text{Re} \{d_{\tau}^{\gamma}\}| &\leq 7.2 \ 10^{-20} \ ecm, \text{ SuperB/Flavor factory, 5 yrs running, } 75ab^{-1} (20) \end{split}$$

G.A.Gonzalez-Sprinberg, arXiv:0707.1658

Tau g-2

Muon g-2

 O(10⁻⁹) shift

~ m²

Tau g-2

 O(10⁻⁶) shift

Current limit by Delphi (e+e- \rightarrow e+e- τ + τ -) - 0.052 < a_{τ} < 0.013 (95% C.L.)

SPS	$1\mathrm{a}$	$1\mathrm{b}$	2	3	4	5
$\Delta a_{\mu} \times 10^{-9}$	3.1	3.2	1.6	1.4	4.8	1.1
$\Delta a_{\tau} \times 10^{-6}$	0.9	0.9	0.5	0.4	1.4	0.3