原子炉ニュートリノ



@高エネルギー研究者会議将来検討小委員会
 東京大学理学部
 05/09/2009



#### \* DoubleChooz, RENO, Dayabayの現状 \* 将来の原子炉ニュートリノ実験の可能性 \*まとめ

原子炉ニュートリノのエネルギー





F.Suekane, TIPP09





 $\sin^2 2\theta_{13} < 0.15 @\Delta m^2 = 2.5 \times 10^{-3} \text{eV}^2$ 



Use near and far detector of identical structure to cancel systemaic uncertainties of v flux and detector response.



#### Double Chooz Experiment to detect the $3^{rd}$ *v* Oscillation using reactor *v*.



to Monibe



#### 2004-2007: Detector Design

**Calibration Glove-Box :** 

**Outer Veto :** Scintillator panels

**Target V :** 10,3 m<sup>3</sup> LS; 80% C<sub>12</sub>H<sub>26</sub>+ 20% PXE +0,1% Gd + PPO + Bis-MSB

γ Catcher: 22,6 m<sup>3</sup> LS; 80% C<sub>12</sub>H<sub>26</sub> + 20% PXE + PPO + Bis-MSB

> Non scintillating Buffer : 114 m<sup>3</sup> mineral oil

Buffer vessel & 390 10" PMTs : Stainless steel 3 mm

> Inner Muon Veto : 90 m<sup>3</sup> mineral oil + 70 8" PMTs

Steel Shielding : 17 cm steel, All around



## $\bar{v}_{\rho}$ event selection



Only 3 main cuts. => small room for systematic uncertainty
Detection Efficiency is insensitive to the cut parameters

# Sensitivity in Time



DC, Dayabay, RENO

Double Chooz

Daya Bay





|                                   | Double Chooz | Dayabay                   | RENO   |
|-----------------------------------|--------------|---------------------------|--------|
| Power(GWth)                       | 8.2GW        | 11.6GWth<br>(17.4GW>2012) | 16.1GW |
| Detector(ton)                     | 8            | 80                        | 16     |
| Baseline(km)                      | 1.05         | 1.8                       | 1.4    |
| $\sin^2 2\theta_{13}$ Sensitivity | ~0.03        | ~0.01                     | ~0.02  |

#### *v*-Detector

#### Double Chooz

Daya Bay

RENO

Buffer

(Mineral Oil)

-0

Veto (Water)

+0

Gamma Catcher 1

(LAB)



THE-

M=20ton N=2+2+4



Target (LAB+Gd)

M=8ton N=1+1

#### Double Chooz Status



#### **DOUBLE CHOOZ far detector**



# Detector Tank is ready. (2008.

# Veto PMT Installed. (2009.2)





6/2009 Botton & Side PMT (330) installation finished (under Japanese leadership)







9/2009 Acrylic Vessels being installed

12/ Electronics installation1/2010 Scintillator filling4/2010 Commissioning



Slides: from Courtesy of Prof. Kam\_Biu Luk & Prof. Karsten Heeger (2009.3)

## **Civil Construction**



#### Daya Bay: Milestones (by Kam Bieu)

• Daya Bay is fully funded.

• Civil and detector construction is well on the way.

Beneficial occupancy of
 Surface Assembly Building March 2009

- Assembly of first two ADs in SAB Summer 2009
- Data-taking in Near Halls Summer 2010
- Data-taking with all eight detectors

Summer 2011

## **Current Status of RENO**

Slides: Courtesy of Prof. Soo Bong Kim 2009.3



#### **RENO** Near and Far Tunnels are ready







No Detector Photos

## **Summary of Construction Status**

- 03~10, 2007 : Geological survey and tunnel design are completed.
- 07~11, 2008 : Construction of both near and far tunnels are completed.
- 12, 2008 ~ 02, 2009 : Veto tanks and peripheral facilities (electricity, air circulation, drainage, etc.) are completed.
- 10, 2008 : A mock-up detector (~1/10 in volume) is built and being tested.
  - 11, 2008 : SK new electronics are adopted and ready.
- Steel/acrylic containers and mechanical structure will be prepared and installed until Aug. 2009.
- Both near and far detectors are expected to be ready for data-taking in early 2010.

## Summary of DC, DB, RN



DC, Dayabay and RENO finally start data taking within a year.

#### 今後の原子炉ニュートリノ振動実験の役割

ニュートリノ振動の4つの課題

(1) sin<sup>2</sup>2θ<sub>13</sub>の測定
(2)Mass Hierarchyの決定
(3)θ<sub>23</sub>縮退の決定
(4) CP 非保存δの測定

#### 利用できる情報

(1) 加速器による
$$v_{\mu} => v_{e}$$
  
(2) 加速器による $\bar{v}_{\mu} => \bar{v}_{e}$   
(3) Matter effect (baselineの差)  
(4) 原子炉による $\bar{v}_{e} => \bar{v}_{e}$ 









統計が大きくなると、エネルギースペクトルのDistortionの測定が効果的になり、 normalizationの誤差の影響を受けなくなる。=>  $\delta \sin^2 2\theta_{13} < 0.01$ が可能。

Arxive hep-ph/0601266v1

#### From Double Chooz to Triple Chooz — Neutrino Physics at the Chooz Reactor Complex

P. HUBER<sup>a</sup>, J. KOPP<sup>b</sup>, M. LINDNER<sup>c</sup>, M. ROLINEC<sup>d</sup>, W. WINTER<sup>e</sup>

#### Target 質量を8トンから210 ton にする



# Complementarity of Reactor-accelerator $\theta_{13}$ measurement







もし $\theta_{23}$  degeneracyとMass Hierarchyが決定されれば、放物線の数は一つになる。

原子炉によるθ<sub>13</sub>の精度が良くなれば、加速器のνモードのデータと組み合わせる ことによりsinδを早く決定できる可能性がある。 



Physics @ 1<sup>st</sup> 
$$\Delta m_{12}^2$$
 Maximum  
 $P(\overline{v}_e \rightarrow \overline{v}_e) = 1 - \begin{cases} \cos^4 \theta_{13} \sin^2 2\theta_{12} \sin^2 \Delta_{21} \\ +\sin^2 2\theta_{13} \cos^2 \theta_{12} (\sin^2 \Delta_{31} + \tan^2 \theta_{12} \sin^2 \Delta_{32}) \end{cases}$ 









$$\propto \sin^2 2\theta_{13} \left( \sin^2 \Delta_{31} + \frac{\tan^2 \theta_{12}}{6} \sin^2 \Delta_{32} \right); \quad \Delta_{ij} = \frac{\Delta m_{ij} L}{4E}$$

2種類の周期が重ね合わさったものになっている。

=> フーリエ解析で、
$$\Delta m_{23}^2 \ge \Delta m_{13}^2$$
が分離でき、  
そのamplitudeが比較できれば良い。

J.Learned et al. arXive-0612022

10 10 10 Power, Arb Units 10 10 10 10 10 10 19 4 0.005 0.006 ôm<sup>2</sup>/eV<sup>2</sup> 0.001 0.002 40.0003 0.064 0.007 0.008 0.009 0.01

FIG. 2: Fourier power spectrum with modulation in units of  $eV^2$  and power in arbitrary units on the logarithmic scale. The peak due to  $\Delta_{31}$  with  $\sin^2(2\theta_{13})=0.1$  is prominent.

パワースペクトルのsimulation



FIG. 3: Neutrino mass hierarchy (normal=solid; inverted=dashed) is determined by the position of the small shoulder on the main peak.

## Physics @ $\Delta m_{13}^2$ 2<sup>nd</sup> Maximum (L~5km)



Precise  $\Delta m_{13}^2$ 

It is not yet clear about the significance of this measurement.

まとめ

現在

θ<sub>13</sub>: DoubleChooz, RENO, Dayabayが2010稼働開始予定
 あと数年で Sensitivity sin<sup>2</sup>2θ<sub>13</sub>=0.01~0.03

Future

\*High Precision  $\theta_{13}$ ; M~100 $\triangleright$  @K-K  $\tau \sin^2 2\theta_{13} < 0.01$ 

KASKA-II, Triple Chooz

→ 
$$\theta_{23}$$
 Degeneracy with accelerator

 $\rightarrow$  early sin $\delta$  detection with accelerator

L=50km, M~3Kton(KKの場合)で、 \*High Precision  $\theta_{12}$ ;  $(\delta \sin^2 \theta_{12} / \sin^2 \theta_{12} \sim 2.4\%(1\sigma))$ \*Mass hierarchy

=> パラメータの関係が複雑なので、第一世代の $heta_{13}$ 測定後、 それ以後の戦略を <mark>加速器-原子炉実験で総合的</mark>に検討することが必要。