CANDLES計画と 世界の二重ベータ実験の状況

Candles

小川泉

Name	Nucleus	Mass*	Method	Location	Time line				
Operational & recently completed experiments									
CUORICINO	Te-130	11 kg	bolometric	LNGS	2003-2008				
NEMO-3	Mo-100/Se-82	6.9/0.9 kg	tracko-calo	LSM	until 2010				
Construction funding									
CUORE	Te-130	200 kg	bolometric	LNGS	2012				
EXO-200	Xe-136	160 kg	liquid TPC	WIPP	2009 (comiss.)				
GERDA I/II	Ge-76	35 kg	ionization	LNGS	2009 (comiss.)				
SNO+	Nd-150	56 kg	scintillation	SNOlab	2011				
Substantial R&D funding / prototyping									
CANDLES	Ca-48	0.35 kg	scintillation	Kamioka	2009				
Majorana	Ge-76	26 kg	ionization	SUSL	2012				
NEXT	Xe-136	80 kg	gas TPC	Canfranc	2013				
SuperNEMO	Se-82 or Nd-150	100 kg	tracko-calo	LSM	2012 (first mod.)				
R&D and/or conceptual design									
CARVEL	Ca-48	tbd	scintillation	Solotvina					
COBRA	Cd-116, Te-130	tbd	ionization	LNGS					
DCBA	Nd-150	tbd	drift chamber	Kamioka					
EXO gas	Xe-136	tbd	gas TPC	SNOlab					
MOON	Mo-100	tbd	tracking	Oto					
Other decay modes									
TGV	Cd-106		ionization	LSM	operational				

*: mass of DBD-isotopes; detector & analysis inefficiencies NOT included! Range: 18% to ~90%

S. Schönert, TAUP 2009

5

Experimental figure of merit

- ε :detection efficiency f_x :isotopic abundanceW:molecular weight $G^{0\nu}$:phase space factor $M^{0\nu}$:nuclear matrix element
- M: source mass
 T: measuring time
 b: background rate in c/(keV⋅kg⋅yr)
 ΔE: energy resolution

◆ 二重ベータ崩壊のQ値 ■ 自然放射能の影響(バックグラウンド)

 $E_{\gamma}^{\text{max}} = 2.6 \text{ MeV} (^{208} \text{Tl})$ $E_{\beta}^{\text{max}} = 3.27 \text{ MeV} (^{214} \text{Bi})$

enrichment

isotope	Q (keV)	ab.(%)									
46Ca	990.4	0.004	98Mo	112	24.13	130Te	2529	34.08	170Er	654	14.93
48Ca	4272	0.187	100Mo	3034	9.36	134Xe	830	10.44	176Yb	1087	12.76
70Zn	1001	0.62	104Ru	1300	18.62	136Xe	2468	8.87	186W	488	28.43
76Ge	2039	7.61	110Pd	2000	11.72	142Ce	1417	11.114	192Os	414	40.78
80Se	134	49.61	114Cd	537	28.73	146Nd	70	17.2	198Pt	1047	7.163
82Se	2995	8.73	116Cd	2805	7.49	148Nd	1929	5.7	204Hg	416	6.87
86Kr	1256	17.3	122Sn	366	4.63	150Nd	3368	5.6	232Th	842	100
94Zr	1144	17.4	124Sn	2287	5.79	154Sm	1251	22.75	238U	1145	99.28
96Zr	3350	2.8	128Te	867	31.74	160Gd	1730	21.86			

Q > 3.3 MeV; $Q_{\beta}(^{214}\text{Bi})=3.27 \text{ MeV}$

 $Q > 2.0 \,\,{\rm MeV}$

V.I. Tretyak and Y.G. Zdesenko 2002

Candles

S. Schönert, TAUP 2009

核行列要素(1)

核行列要素(2)

Interacting Shell Model (Caurier et al., PRL 100, 2008)

	$M^{(0 u)}$	$\langle m_{\nu} \rangle$
$^{48}Ca \rightarrow {}^{48}Ti$	0.59	1.07
$^{76}\text{Ge} \rightarrow ^{76}\text{Se}$	2.22	0.91
$^{82}\text{Se} \rightarrow ^{82}\text{Kr}$	2.11	0.46
124 Sn $\rightarrow ^{124}$ Te	2.02	0.48
$^{128}\text{Te} \rightarrow ^{128}\text{Xe}$	2.26	1.68
$^{130}\text{Te} \rightarrow ^{130}\text{Xe}$	2.04	0.37
136 Xe $\rightarrow ^{136}$ Ba	1.70	0.47

不定性あり 数種の原子核での測定が必要

Experimental figure of merit

- f_x :isotopic abundance ε :detection efficiencyW:molecular weight $G^{0\nu}$:phase space factor $M^{0\nu}$:nuclear matrix element
 - M: source mass T: measuring time b: background rate in c/(keV·kg·yr)
 - ΔE : energy resolution

Ob

 $\times \varepsilon$

検出器のタイプによる分類 \bullet Source = detector Source \u00e4 detector Semiconductor -Time Projection, tracking & Drift Chambers $O\Delta E$ **COBRA NEMO/Super-NEMO** Majorana DCBA **GERDA EXO** Bolometer CUORE/CUORICINO $O\Delta E$ Scintillator CANDLES **KamLAND** SNO+ 2009/9/5

11

バックグラウンドの比較

◆検出器サイズあたりのBackground rate

$b\Delta E$ (counts/kg/year)

比較	Target	Project	Status	Abund. (%)	Background rate (counts/kg/year)
	⁴⁸ Ca	ELEGANT VI	Finish	0.187	0 (measured) 0.075 (expected)
		CANDLES III	Constr.	0.187	5x10 ⁻⁴ (expec.)
	⁷⁶ Ge	HDM	Finish	~86	0.61 (meas.)
	¹³⁰ Te	CUORICINO	Finish	33.9	2.4 (meas.)
		CUORE	Const. R&D	33.9	0.8 (CUORE-0;expec.) 10 ⁻² ~10 ⁻³ (Goal)
	¹³⁶ Xe	EXO-200	Constr.	~80	0.1 (expec.)

 \mathcal{O}

CANDLES Project

CANDLES

<u>CA</u>lcium fluoride for studies of <u>Neutrino and Dark matters</u> by <u>Low Energy</u> <u>Spectrometer</u>

undoped CaF₂ (CaF₂(pure)) • ⁴⁸Ca ($Q_{\beta\beta}$ =4.27 MeV) Atten. length > 1 m Low radioactive impurities Low background detector • 4π active shield (LS) Passive shield (Water, LS) Pulse shape information Good energy resolution large photo-coverage Two phase LS system

BG reduction / rejection — 4π active shield —

Performance Test $(4\pi \text{ active shield})$

BG reduction / rejection — Internal BG (U, Th)—

Succesive decays in CaF₂ scintillator Candles

Rejection of Double Pulse(DP) Candles

Typical Pulse Shapes

Candles

Pulse Shape Discrimination

Pulse Shape discrimination Shape Indicator (PRC 67(2003) 014310)

CANDLES III

CANDLES III (prototype)

- Constructed at Osaka Univ. (sea level)
 - small version for R&D
 - check the performance of CANDLES
- CaF₂ modules
 - 10³ cm³ × 60 crystal; 191 kg
 - with conversion phase
- Liquid scintillator
- ♦ H₂O Buffer : passive shield
 - \$\phi2800 \times h2600\$
- PMTs
 - 15" PMT (× 8) : R2018
 12" PMT (× 22) : P8055
 - 13" PMT (×32) : R8055

1 "calibration" crystal (#60) (High Contamination in U, Th) 65 mBq/kg (U-chain), 28 mBq/kg (Th-chain)

CANDLES III

Candles

100 150 200 250 300 350 400 450 500 Time(2ns)

CANDLES III (U.G.) @Kamioka

Candles

CANDLES III(U.G.)

2009/9/5

5.800

後室

4. 25

CANDLES III (U.G.)

R&D for future large detector

Crown Ether

- Held by electrostatic attraction between negatively charged O⁻ of the C-O dipoles & ion (Ca²⁺)
- How well the ion fits into the crown ring
 Liquid (aq-salt)-liquid
 - (org-crown) extraction in isotopic equilibrium

⁴⁸Ca Enrichment by crown-ether Candles

Summary & Outlook

