2009年9月5日 高エネ委 研計小委

T2Kの現状と将来のJ-PARC vビー ムアップグレード

小林隆 IPNS, KEK

これまでわかったこと、わかってないこと

太陽+原子炉 •θ₁₂~33° • $\Delta m_{12}^2 \sim 0.0008 eV^2$ 大気+加速器 •θ₂₃~45° • $\Delta m_{23}^2 \sim 0.0025 eV^2$ 未知! •θ₁₃<10° • $(\Delta m_{13}^2 \sim \Delta m_{23}^2)$? •δ **???**

$$M^{2} \qquad M^{2} \qquad M^{2$$

0.005 0.04 1

クォーク(小林益川)とも顕著な違い

$$U_{MNSP} \sim \begin{pmatrix} 0.8 & 0.5 & ? \\ 0.4 & 0.6 & 0.7 \\ 0.4 & 0.6 & 0.7 \end{pmatrix}$$

T.Kobayashi (KEK)

Tokai-to-Kamioka (T2K) long baseline neutrino oscillation experiment

Goal

* ve 出現の発見→θ₁₃決定

νµ 消失の精密測定.

• Intense narrow spectrum vµ beam from J-PARC MR

- Off-axis w/ 2~2.5deg
- ✤ Tuned at osci. max.
- SK: largest, high PID performance

最も重要かつ緊急な課題: θ₁₃. なぜ?

CPV & sign(Δm^2) will be probed thru v_e appearance in accel LBL

$$P(\nu_{\mu} \rightarrow \nu_{e}) = 4C_{1}^{2}S_{23}^{2}S_{23}^{2}\sin^{2}\frac{\Delta m_{31}^{2}L}{4E} \times \left(1 + \frac{2a}{\Delta m_{31}^{2}} (1 - 2S_{13}^{2})\right) \text{ Leading}$$

$$+8C_{13}^{2}S_{12}S_{13}S_{23}(C_{12}C_{23}\cos\delta - S_{12}S_{13}S_{23})\cos\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \sin\frac{\Delta m_{21}^{2}L}{4E}$$

$$-8C_{13}^{2}C_{12}C_{23}S_{1}S_{13}S_{23}\sin\delta\sin\frac{\Delta m_{32}^{2}L}{4E}\sin\frac{\Delta m_{31}^{2}L}{4E}\sin\frac{\Delta m_{21}^{2}L}{4E} \text{ CP-odd}$$

$$+ \text{ other terms.} \qquad \delta \rightarrow -\delta, a \rightarrow -a \text{ for } \nabla_{\mu} \rightarrow \nabla_{e}$$

$$Matter eff.: a = 7.56 \times 10^{-5} [eV^{2}] \cdot \left(\frac{\rho}{[g/em^{3}]}\right) \cdot \left(\frac{E}{[GeV]}\right)$$

$$CP \# R F O \overline{M} \Re \propto \sin\delta \cdot S_{12} \cdot S_{23} \cdot S_{13}$$

$$(\text{where } \sin\theta_{12} \sim 0.5, \ \sin\theta_{23} \sim 0.7, \ \sin\theta_{13} < 0.2)$$

$$The size of \theta_{13}$$

$$Decide future dir.!$$

Takashi Kobayashi (KEK), PAC07

0.1	10	17	143

θ₂₃, Δm₂₃² 精密測定: μニュートリノ消失

J-PARC Facility (KEK/JAEA)

South to North

Materials and Life Experimental Facility

Linac

Synchrotron

CY2007 Beams JFY2008 Beams JFY2009 Beams rd's eye photo in January of 2008

Neutrino Beams

Main ring

(to Kamioka)

Hadron Exp. Facility

ニュートリノ施設

Near neutrino detectors

TPC

Off-axis 検出器

12-FEM board stack-up before

burn-in phase

 製作、組立、 試験進行中。
 9月ごろ設置 開始
 冬以降のビー ムに備える

SMRD

11

11

T2K beamline started operation!

First shot after turning on SC magnets at 19:09, Apr.23, 2009

Muon monitors (installed behind beam dump)

Muon monitor signal

First observation of muons produced in neutrino beamline

J-PARC Neutrino Facility Start Operation

Muon monitor signal

uuv/ 🖕 2.uuv/ 💼 uuv/ 🚛 2.000% 500.0%/ Trig'd? 🤁 🚺

Ionization chamber

First beam: Apr.23, 2009

~4x1011p/bunch, 1bunch (~0.1% beam) Only 1st horn, 1 INGRID mod.

All components worked well!

Horn Off

-2.54 cm

Y SIGMA

Y SIGMA

Horn 273kA

- June~Sept, 2009 (during scheduled shutdown)
 - Horn 2 and 3 installation and operation test
 - On-axis INGRID detector completion
 - Ready to accept beam on Oct. 10
- ◆ Fall~Winter, 2009
 - Beam/Detector commissioning
- Winter JFY2009 ~ 2010
 - ✤ Want to accumulate O(100kW x10⁷s) by Summer 2010
 - First physics results in 2010
 - ✤ → Exceed sensitivity of present world record result from Chooz experiment
- After that
 - Physics data taking with > a few 100kW
 - Next milestone: 1~2MW.yr before as soon as possible
- Final goal: 3.75MW.yr (approved by PAC)

θ_{13} sensitivity

T.Kobayashi (KEK)

Accelerator issues to realize design spec

- LINAC
 - − RFQ discharge \rightarrow 2nd ver. End of 2010
 - Energy 181MeV → 400MeV: 2012~2013
 - − Ion source/RFQ: $30mA \rightarrow 50mA$
 - ...
- RCS
 - RF core buckling problem (being attacked w/ UT group)
 - Injection bump mag. PS: →400MeV
 - ...
- MR
 - Shorten Kicker rise time 6bunch \rightarrow 8bunch (being replaced)
 - Replace injection/extraction devices with full aperture (60pi.mm.mrad)
 - Power supply ripple problem
 - RF improvement (add fundamental/hh,
 - .
- All
 - Control beam loss (drastic improvement of collimator, tune control devices etc)

(1)T2K and beyond:

3-step Power Upgrade Scenario

Based on the assumption that three machine issues will be solved in a few years

Short term plan (2009~2010)

- FY2009 → Establish 30 kW run and 100kW trial
- FY2010 → Establish 100kW (10⁷ sec) and 300kW trial

Middle term plan (2011~in a few years??) Achieve design beam power (750kW)

- Understanding/solving space charge effect and collimator scenario/aperture
- Improvement of MR magnet power supply to increase repetition rate
- Linac 400 MeV energy recovery and upgrade of the RCS injection system

Long-term plan toward power frontier (>MW)

KEK roadmap

Quest for the Origin of Matter Dominated Universe

Technically Feasible MR Power Improvement Scenario — KEK Roadmap —

	Day1 (up to Jul.2010)	Next Step	KEK Roadmap	Ultimate
Power(MW)	0.1	0.45	1.66	?
Energy(GeV)	30	30	30	
Rep Cycle(sec)	3.5	3-2	1.92	
No. of Bunch	6	8	8	
Particle/Bunch	1.2×10 ¹³	<4.1×10 ¹³	8.3×10 ¹³	
Particle/Ring	7.2×10 ¹³	<3.3×10 ¹⁴	6.7×10 ¹⁴	
LINAC(MeV)	181	181	400	
RCS	h=2	h=2 or 1	h=1	

After 2010, plan depends on financial situation

Item to be Modified from DAY1 toward High Intensity

- No. of Bunch in MR($6 \rightarrow 8$)
 - Fast Rise Time Extraction Kicker Magnet
- Increase Repetition Rate $(3.5Sec \rightarrow 1.92Sec)$
 - RF and Magnet Power Supply Improvement
- RCS h=1 Operation (longer beam bunch to decrease space charge effect)
 - RF Improvement
- LINAC 400MeV Operation (avoid severe space charge effect at RCS injection)

h=2: 2 bunches×4cycle injection to MR h=1:Single bunch with doubled no. of proton×8cycle injection

まとめ

■ 最重要課題:電子ニュートリノ出現を検出し世界に 先駆けてもの測定 ■ ニュートリノ物理の今後の方向性を決める θ₁₃ ■ 感 $gsin^2 2\theta_{13} > 0.008 (90\%), \sim 0.018 (3\sigma)$ ■ 2009年4月23日~ 実験開始 ■ 4,5月ビームコミッショニング ■約1000分の1の強度、 ■ 第1ホーン、INGRID1モジュール ■ 秋以降ビームコミッショニング再開 ■ 第2, 3ホーン、INGRIDすべて稼働。 ■ Off-axis冬から稼働 ■ 冬から物理測定を開始したい マイルストーン ■ O(100kW.10⁷sec) を2010年夏までに、 ■ 1~2MW.107 sec程度を数年内、遅くとも2014年ごろまで ■ 最終的に3.75MW.107sec ■ 加速器の改良がクリティカル